Suppr超能文献

细菌鞭毛马达的推力和功率输出:微磁镊方法。

Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach.

机构信息

Department of Physics, The Ohio State University, Columbus, Ohio.

School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio.

出版信息

Biophys J. 2019 Oct 1;117(7):1250-1257. doi: 10.1016/j.bpj.2019.08.036. Epub 2019 Sep 6.

Abstract

One of the most common swimming strategies employed by microorganisms is based on the use of rotating helical filaments, called flagella, that are powered by molecular motors. Determining the physical properties of this propulsive system is crucial to understanding the behavior of these organisms. Furthermore, the ability to dynamically monitor the activity of the flagellar motor is a valuable indicator of the overall energetics of the cell. In this work, inherently magnetic bacteria confined in micromagnetic CoFe traps are used to directly and noninvasively determine the flagellar thrust force and swimming speed of motile cells. The technique permits determination of the ratio of propulsive force/swimming speed (the hydrodynamic resistance) and the power output of the flagellar motor for individual cells over extended time periods. Cells subjected to ultraviolet radiation are observed to experience exponential decays in power output as a function of exposure time. By noninvasively measuring thrust, velocity, and power output over time at a single-cell level, this technique can serve as the foundation for fundamental studies of bacterial hydrodynamics and also provides a novel, to our knowledge, tether-free probe of single-cell energetics over time.

摘要

微生物中最常见的一种游动策略是基于使用旋转的螺旋丝,称为鞭毛,这些鞭毛由分子马达驱动。确定这个推进系统的物理特性对于理解这些生物的行为至关重要。此外,能够动态监测鞭毛马达的活性是细胞整体能量学的一个有价值的指标。在这项工作中,限制在微磁 CoFe 陷阱中的固有磁性细菌被用来直接和非侵入性地确定游动细胞的鞭毛推力和游动速度。该技术允许确定推进力/游动速度(水动力阻力)的比值以及单个细胞的鞭毛马达的功率输出,这可以在较长的时间内进行。观察到暴露在紫外线下的细胞的功率输出随着暴露时间呈指数衰减。通过在单细胞水平上非侵入性地测量随时间推移的推力、速度和功率输出,该技术可以作为细菌流体动力学基础研究的基础,并为我们所知的时间上的单细胞能量学提供一种新的、无束缚的探针。

相似文献

1
Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach.
Biophys J. 2019 Oct 1;117(7):1250-1257. doi: 10.1016/j.bpj.2019.08.036. Epub 2019 Sep 6.
2
Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036307. doi: 10.1103/PhysRevE.85.036307. Epub 2012 Mar 19.
3
Fibrous Flagellar Hairs of Chlamydomonas reinhardtii Do Not Enhance Swimming.
Biophys J. 2020 Jun 16;118(12):2914-2925. doi: 10.1016/j.bpj.2020.05.003. Epub 2020 May 19.
4
Fluid mechanics of swimming bacteria with multiple flagella.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042704. doi: 10.1103/PhysRevE.89.042704. Epub 2014 Apr 11.
5
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability.
Sci Rep. 2018 Jul 16;8(1):10728. doi: 10.1038/s41598-018-28319-8.
7
Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach.
Phys Rev E. 2017 Sep;96(3-1):033107. doi: 10.1103/PhysRevE.96.033107. Epub 2017 Sep 15.
8
Flagella-induced transitions in the collective behavior of confined microswimmers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):021001. doi: 10.1103/PhysRevE.90.021001. Epub 2014 Aug 28.
9
Propulsion by passive filaments and active flagella near boundaries.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041915. doi: 10.1103/PhysRevE.82.041915. Epub 2010 Oct 20.
10
Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20643-8. doi: 10.1073/pnas.1215274109. Epub 2012 Nov 26.

引用本文的文献

1
Precisely Navigated Biobot Swarms of Bacteria for Water Decontamination.
ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7023-7029. doi: 10.1021/acsami.2c16592. Epub 2023 Jan 26.
2
Tuning up Maxwell's demon.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2108218118.

本文引用的文献

1
Single-Cell Bacterial Electrophysiology Reveals Mechanisms of Stress-Induced Damage.
Biophys J. 2019 Jun 18;116(12):2390-2399. doi: 10.1016/j.bpj.2019.04.039. Epub 2019 May 15.
2
Bacteria and archaea on Earth and their abundance in biofilms.
Nat Rev Microbiol. 2019 Apr;17(4):247-260. doi: 10.1038/s41579-019-0158-9.
3
Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension.
Phys Rev Lett. 2018 Nov 2;121(18):188001. doi: 10.1103/PhysRevLett.121.188001.
4
The biomass distribution on Earth.
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511. doi: 10.1073/pnas.1711842115. Epub 2018 May 21.
5
Stimulus sensing and signal processing in bacterial chemotaxis.
Curr Opin Microbiol. 2018 Oct;45:22-29. doi: 10.1016/j.mib.2018.02.002. Epub 2018 Feb 20.
6
The human microbiome in evolution.
BMC Biol. 2017 Dec 27;15(1):127. doi: 10.1186/s12915-017-0454-7.
7
Ultraviolet Light Induced Generation of Reactive Oxygen Species.
Adv Exp Med Biol. 2017;996:15-23. doi: 10.1007/978-3-319-56017-5_2.
8
Tuning bacterial hydrodynamics with magnetic fields.
Phys Rev E. 2017 Jun;95(6-1):062612. doi: 10.1103/PhysRevE.95.062612. Epub 2017 Jun 30.
9
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers.
Nat Rev Microbiol. 2017 Mar;15(3):149-159. doi: 10.1038/nrmicro.2016.178. Epub 2017 Jan 16.
10
Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.
Nat Nanotechnol. 2016 Nov;11(11):941-947. doi: 10.1038/nnano.2016.137. Epub 2016 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验