Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Sci Total Environ. 2010 Aug 1;408(17):3569-75. doi: 10.1016/j.scitotenv.2010.04.017. Epub 2010 May 10.
To investigate the potential role of ammonia in ion chemistry of PM(2.5) aerosol, measurements of PM(2.5) (particulate matter having aerodynamic diameter < 2.5 microm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NO(x)), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO4(2-) (26.3 microg m(-3)) > NO3(-) (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 microg m(-3)) and (ii) winter: SO4(2-) (28.9 microg m(-3)) > NO3(-) (23.0) > NH4+ (16.4) > Ca2+ (3.4) > K+ (3.3) > Na+ (3.2 microg m(-3)). The mean molar ratio of NH4+ to SO4(2-) was 2.8+/-0.6 (mostly > 2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3(-) and Cl(-). Higher sulfur conversion ratio (F(s): 58%) than nitrogen conversion ratio (F(n): 39%) indicated that SO4(2-) was the preferred secondary species to NO3(-). The charge balance for the ion chemistry of PM(2.5) revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO4(2-) to PM(2.5) in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM(2.5) and any particulate control strategy should include optimal control of primary precursor gases including ammonia.
为了研究氨在 PM2.5 气溶胶离子化学中的潜在作用,在 2007-2008 年的两个季节(夏季和冬季),在印度恒河流域的一个城市-工业城市坎普尔的四个采样点,对 PM2.5(空气动力学直径<2.5 微米的颗粒物)及其离子形态和气态污染物(二氧化硫(SO2)、氮氧化物(NOx)、氨(NH3)和硝酸(HNO3))进行了测量。水溶性离子的平均浓度顺序为:(i)夏季:SO4(2-)(26.3μg m-3)>NO3-(16.8)>NH4+(15.1)>Ca2+(4.1)>Na+(2.4)>K+(2.1μg m-3);(ii)冬季:SO4(2-)(28.9μg m-3)>NO3-(23.0)>NH4+(16.4)>Ca2+(3.4)>K+(3.3)>Na+(3.2μg m-3)。NH4+与 SO4(2-)的平均摩尔比为 2.8+/-0.6(大多>2),表明 NH3 丰富,足以中和 H2SO4。过量的 NH4+被推断与 NO3-和 Cl-有关。硫的转化率(F(s):58%)高于氮的转化率(F(n):39%),表明 SO4(2-)是与 NO3-反应的首选二次物种。PM2.5 离子化学的电荷平衡表明,由氨作为前体形成的化合物为(NH4)2SO4、NH4NO3和 NH4Cl。本研究明确证实,尽管夏季 NH4+和 SO4(2-)对 PM2.5 的贡献较高,但对于硝酸盐(颗粒相)而言,由于低温驱动了氨和 HNO3 之间的反应向有利于硝酸盐形成的方向进行,冬季至关重要。总之,无机二次气溶胶的形成占 PM2.5 质量的 30%,任何颗粒控制策略都应包括对包括氨在内的主要前体气体的最佳控制。