Suppr超能文献

可溶性鸟苷酸环化酶被过量的 NO 和 YC-1 以不同的方式激活:共振拉曼光谱证据。

Soluble guanylate cyclase is activated differently by excess NO and by YC-1: resonance Raman spectroscopic evidence.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

Biochemistry. 2010 Jun 15;49(23):4864-71. doi: 10.1021/bi100506j.

Abstract

Modulation of soluble guanylate cyclase (sGC) activity by nitric oxide (NO) involves two distinct steps. Low-level activation of sGC is achieved by the stoichiometric binding of NO (1-NO) to the heme cofactor, while much higher activation is achieved by the binding of additional NO (xsNO) at a non-heme site. Addition of the allosteric activator YC-1 to the 1-NO form leads to activity comparable to that of the xsNO state. In this study, the mechanisms of sGC activation were investigated using electronic absorption and resonance Raman (RR) spectroscopic methods. RR spectroscopy confirmed that the 1-NO form contains five-coordinate NO-heme and showed that the addition of NO to the 1-NO form has no significant effect on the spectrum. In contrast, addition of YC-1 to either the 1-NO or xsNO forms alters the RR spectrum significantly, indicating a protein-induced change in the heme geometry. This change in the heme geometry was also observed when BAY 41-2272 was added to the xsNO form. Bands assigned to bending and stretching motions of the vinyl and propionate substituents undergo changes in intensity in a pattern suggesting altered tilting of the pyrrole rings to which they are attached. In addition, the N-O stretching frequency increases, with no change in the Fe-NO stretching frequency, an effect modeled via DFT calculations as resulting from a small opening of the Fe-N-O angle. These spectral differences demonstrate different mechanisms of activation by synthetic activators, such as YC-1 and BAY 41-2272, and excess NO.

摘要

可溶性鸟苷酸环化酶(sGC)活性的调节涉及两个不同的步骤。NO(1-NO)与血红素辅基的化学计量结合实现 sGC 的低水平激活,而通过在非血红素部位结合额外的 NO(xsNO)可实现更高水平的激活。将别构激活剂 YC-1 加入到 1-NO 形式中可导致与 xsNO 状态相当的活性。在这项研究中,使用电子吸收和共振拉曼(RR)光谱学方法研究了 sGC 的激活机制。RR 光谱证实 1-NO 形式含有五配位的 NO-血红素,并表明 NO 向 1-NO 形式的添加对光谱没有显著影响。相比之下,YC-1 的添加无论是在 1-NO 还是 xsNO 形式下都会显著改变 RR 光谱,表明血红素几何形状发生了蛋白诱导的变化。当 BAY 41-2272 添加到 xsNO 形式时,也观察到血红素几何形状的这种变化。分配给乙烯基和丙酸盐取代基弯曲和伸缩运动的带的强度发生变化,表明它们所连接的吡咯环的倾斜角度发生了改变。此外,N-O 伸缩频率增加,而 Fe-NO 伸缩频率没有变化,DFT 计算模拟的这种效应是由于 Fe-N-O 角度的微小开口所致。这些光谱差异表明,合成激活剂(如 YC-1 和 BAY 41-2272)和过量的 NO 通过不同的机制激活。

相似文献

2
Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
Biochemistry. 2010 May 11;49(18):3815-23. doi: 10.1021/bi902214j.
3
YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit.
Biochemistry. 2014 Jan 14;53(1):101-14. doi: 10.1021/bi4015133. Epub 2013 Dec 30.
5
Interaction of soluble guanylate cyclase with YC-1: kinetic and resonance Raman studies.
Biochemistry. 2000 Apr 11;39(14):4191-8. doi: 10.1021/bi992332q.
6
Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1.
Bioorg Med Chem Lett. 2007 Sep 1;17(17):4938-41. doi: 10.1016/j.bmcl.2007.06.039. Epub 2007 Jun 14.
8
Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation.
Biochem Biophys Res Commun. 2010 Jul 2;397(3):375-9. doi: 10.1016/j.bbrc.2010.05.122. Epub 2010 May 27.
9
Probing domain interactions in soluble guanylate cyclase.
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.
10
Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells.
Br J Pharmacol. 2002 May;136(1):95-103. doi: 10.1038/sj.bjp.0704687.

引用本文的文献

1
Physiological activation and deactivation of soluble guanylate cyclase.
Nitric Oxide. 2018 Jul 1;77:65-74. doi: 10.1016/j.niox.2018.04.011. Epub 2018 Apr 25.
2
Structure/function of the soluble guanylyl cyclase catalytic domain.
Nitric Oxide. 2018 Jul 1;77:53-64. doi: 10.1016/j.niox.2018.04.008. Epub 2018 Apr 25.
4
YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit.
Biochemistry. 2014 Jan 14;53(1):101-14. doi: 10.1021/bi4015133. Epub 2013 Dec 30.
5
Heme sensor proteins.
J Biol Chem. 2013 May 10;288(19):13194-203. doi: 10.1074/jbc.R112.422642. Epub 2013 Mar 28.
6
Dynamic ligand exchange in soluble guanylyl cyclase (sGC): implications for sGC regulation and desensitization.
J Biol Chem. 2011 Dec 16;286(50):43182-92. doi: 10.1074/jbc.M111.290304. Epub 2011 Oct 18.
7
Protective effects of YC-1 against glutamate induced PC12 cell apoptosis.
Cell Mol Neurobiol. 2011 Mar;31(2):303-11. doi: 10.1007/s10571-010-9622-9. Epub 2010 Nov 10.
8
Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
Biochemistry. 2010 May 11;49(18):3815-23. doi: 10.1021/bi902214j.

本文引用的文献

1
Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
Biochemistry. 2010 May 11;49(18):3815-23. doi: 10.1021/bi902214j.
2
A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21602-7. doi: 10.1073/pnas.0911083106. Epub 2009 Dec 9.
3
A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19753-60. doi: 10.1073/pnas.0911645106. Epub 2009 Nov 16.
4
Resonance Raman spectra of an O2-binding H-NOX domain reveal heme relaxation upon mutation.
Biochemistry. 2009 Sep 15;48(36):8568-77. doi: 10.1021/bi900563g.
5
NO-independent, haem-dependent soluble guanylate cyclase stimulators.
Handb Exp Pharmacol. 2009(191):277-308. doi: 10.1007/978-3-540-68964-5_13.
6
Biochemistry of soluble guanylate cyclase.
Handb Exp Pharmacol. 2009(191):17-31. doi: 10.1007/978-3-540-68964-5_2.
7
A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases.
Handb Exp Pharmacol. 2009(191):1-14. doi: 10.1007/978-3-540-68964-5_1.
8
Probing the function of heme distortion in the H-NOX family.
ACS Chem Biol. 2008 Nov 21;3(11):703-10. doi: 10.1021/cb800185h.
9
Characterization of two different five-coordinate soluble guanylate cyclase ferrous-nitrosyl complexes.
Biochemistry. 2008 Mar 25;47(12):3892-9. doi: 10.1021/bi7022943. Epub 2008 Feb 27.
10
An evaluation of harmonic vibrational frequency scale factors.
J Phys Chem A. 2007 Nov 15;111(45):11683-700. doi: 10.1021/jp073974n. Epub 2007 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验