Suppr超能文献

钠/钙交换器选择性调节小鼠味觉受体细胞中的钙信号转导。

Sodium/calcium exchangers selectively regulate calcium signaling in mouse taste receptor cells.

机构信息

Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.

出版信息

J Neurophysiol. 2010 Jul;104(1):529-38. doi: 10.1152/jn.00118.2010. Epub 2010 May 12.

Abstract

Taste cells use multiple signaling mechanisms to generate appropriate cellular responses to discrete taste stimuli. Some taste stimuli activate G protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). While the signaling mechanisms that initiate calcium signals have been described in taste cells, the calcium clearance mechanisms (CCMs) that contribute to the termination of these signals have not been identified. In this study, we used calcium imaging to define the role of sodium-calcium exchangers (NCXs) in the termination of evoked calcium responses. We found that NCXs regulate the calcium signals that rely on calcium influx at the plasma membrane but do not significantly contribute to the calcium signals that depend on calcium release from internal stores. Our data indicate that this selective regulation of calcium signals by NCXs is due primarily to their location in the cell rather than to the differences in cytosolic calcium loads. This is the first report to define the physiological role for any of the CCMs utilized by taste cells to regulate their evoked calcium responses.

摘要

味觉细胞使用多种信号机制来对离散的味觉刺激产生适当的细胞反应。一些味觉刺激激活 G 蛋白偶联受体 (GPCR),导致细胞内储存的钙释放,而其他刺激则使味觉细胞去极化,导致电压门控钙通道 (VGCC) 中的钙内流。虽然已经描述了启动钙信号的信号机制,但尚未确定有助于这些信号终止的钙清除机制 (CCM)。在这项研究中,我们使用钙成像来定义钠钙交换器 (NCX) 在终止诱发钙反应中的作用。我们发现 NCX 调节依赖于质膜钙内流的钙信号,但对依赖于内部储存钙释放的钙信号没有显著贡献。我们的数据表明,NCX 对钙信号的这种选择性调节主要是由于它们在细胞中的位置,而不是由于细胞质钙负荷的差异。这是第一个定义味觉细胞用来调节其诱发钙反应的任何 CCM 的生理作用的报告。

相似文献

1
Sodium/calcium exchangers selectively regulate calcium signaling in mouse taste receptor cells.
J Neurophysiol. 2010 Jul;104(1):529-38. doi: 10.1152/jn.00118.2010. Epub 2010 May 12.
2
Sodium-calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells.
J Physiol. 2009 Aug 15;587(Pt 16):4077-89. doi: 10.1113/jphysiol.2009.173567. Epub 2009 Jul 6.
3
Calcium signaling in taste cells: regulation required.
Chem Senses. 2010 Nov;35(9):753-65. doi: 10.1093/chemse/bjq082. Epub 2010 Aug 25.
4
Ryanodine receptors selectively contribute to the formation of taste-evoked calcium signals in mouse taste cells.
Eur J Neurosci. 2010 Dec;32(11):1825-35. doi: 10.1111/j.1460-9568.2010.07463.x. Epub 2010 Oct 19.
5
Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells.
J Neurophysiol. 2008 Oct;100(4):2177-91. doi: 10.1152/jn.90534.2008. Epub 2008 Aug 6.
6
Evidence for two populations of bitter responsive taste cells in mice.
J Neurophysiol. 2008 Mar;99(3):1503-14. doi: 10.1152/jn.00892.2007. Epub 2008 Jan 16.
7
Calcium signaling in taste cells.
Biochim Biophys Acta. 2015 Sep;1853(9):2025-32. doi: 10.1016/j.bbamcr.2014.11.013. Epub 2014 Nov 16.
8
Examining the neglected side of calcium regulation in taste cells.
J Physiol. 2009 Dec 1;587(Pt 23):5523-4. doi: 10.1113/jphysiol.2009.181842.
9
Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells.
J Physiol. 2009 Apr 15;587(Pt 8):1657-68. doi: 10.1113/jphysiol.2009.170555. Epub 2009 Feb 16.
10
Voltage-gated sodium channels in taste bud cells.
BMC Neurosci. 2009 Mar 12;10:20. doi: 10.1186/1471-2202-10-20.

引用本文的文献

1
Nutrient Sensing by Lingual G-Protein-Coupled Taste Receptors.
Methods Mol Biol. 2025;2882:317-327. doi: 10.1007/978-1-0716-4284-9_16.
2
Defining the role of TRPM4 in broadly responsive taste receptor cells.
Front Cell Neurosci. 2023 Mar 22;17:1148995. doi: 10.3389/fncel.2023.1148995. eCollection 2023.
3
A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli.
PLoS Genet. 2020 Aug 13;16(8):e1008925. doi: 10.1371/journal.pgen.1008925. eCollection 2020 Aug.
4
Sensing Senses: Optical Biosensors to Study Gustation.
Sensors (Basel). 2020 Mar 25;20(7):1811. doi: 10.3390/s20071811.
5
Differential Effects of Diet and Weight on Taste Responses in Diet-Induced Obese Mice.
Obesity (Silver Spring). 2020 Feb;28(2):284-292. doi: 10.1002/oby.22684. Epub 2019 Dec 31.
6
The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells.
Life Sci Alliance. 2019 Jun 5;2(3). doi: 10.26508/lsa.201800287. Print 2019 Jun.
7
Regional differences in nutrient-induced secretion of gut serotonin.
Physiol Rep. 2017 Mar;5(6). doi: 10.14814/phy2.13199.
8
AP1 transcription factors are required to maintain the peripheral taste system.
Cell Death Dis. 2016 Oct 27;7(10):e2433. doi: 10.1038/cddis.2016.343.
9
Inflammatory stimuli acutely modulate peripheral taste function.
J Neurophysiol. 2016 Jun 1;115(6):2964-75. doi: 10.1152/jn.01104.2015. Epub 2016 Mar 23.
10
Calcium signaling in taste cells.
Biochim Biophys Acta. 2015 Sep;1853(9):2025-32. doi: 10.1016/j.bbamcr.2014.11.013. Epub 2014 Nov 16.

本文引用的文献

1
Sodium-calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells.
J Physiol. 2009 Aug 15;587(Pt 16):4077-89. doi: 10.1113/jphysiol.2009.173567. Epub 2009 Jul 6.
2
Voltage dependence of ATP secretion in mammalian taste cells.
J Gen Physiol. 2008 Dec;132(6):731-44. doi: 10.1085/jgp.200810108.
3
Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells.
J Neurophysiol. 2008 Oct;100(4):2177-91. doi: 10.1152/jn.90534.2008. Epub 2008 Aug 6.
4
Signaling mechanisms controlling taste cell function.
Crit Rev Eukaryot Gene Expr. 2008;18(2):125-37. doi: 10.1615/critreveukargeneexpr.v18.i2.20.
5
Evidence for two populations of bitter responsive taste cells in mice.
J Neurophysiol. 2008 Mar;99(3):1503-14. doi: 10.1152/jn.00892.2007. Epub 2008 Jan 16.
6
The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes.
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):377-98. doi: 10.1016/j.pbiomolbio.2007.07.018. Epub 2007 Aug 11.
7
Breadth of tuning and taste coding in mammalian taste buds.
J Neurosci. 2007 Oct 3;27(40):10840-8. doi: 10.1523/JNEUROSCI.1863-07.2007.
8
Signal transduction and information processing in mammalian taste buds.
Pflugers Arch. 2007 Aug;454(5):759-76. doi: 10.1007/s00424-007-0247-x. Epub 2007 Apr 28.
9
The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6436-41. doi: 10.1073/pnas.0611280104. Epub 2007 Mar 26.
10
Afferent neurotransmission mediated by hemichannels in mammalian taste cells.
EMBO J. 2007 Feb 7;26(3):657-67. doi: 10.1038/sj.emboj.7601526. Epub 2007 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验