Suppr超能文献

木质素聚合模型。I. 脱氢聚合物模拟模型。

Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.

机构信息

Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.

出版信息

Plant Physiol. 2010 Jul;153(3):1332-44. doi: 10.1104/pp.110.154468. Epub 2010 May 14.

Abstract

Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the primary structure of lignin polymers. Our model predicts two controlling factors for the beta-O-4 content of syringyl-guaiacyl lignins: the supply rate of monolignols and the relative amount of supplied sinapyl alcohol monomers. We have analyzed the in silico degradability of the resulting lignin polymers by cutting the resulting lignin polymers at beta-O-4 bonds. These are cleaved in analytical methods used to study lignin composition, namely thioacidolysis and derivatization followed by reductive cleavage, under pulping conditions, and in some lignocellulosic biomass pretreatments.

摘要

木质素是一种杂聚物,据认为它是通过单体木酚的组合基耦合在细胞壁中形成的。在这里,我们提出了一个基于组合偶联理论的体外木质素聚合模拟模型,该模型使我们能够预测控制木质素聚合物一级结构的反应条件。我们的模型预测了影响丁香基-愈创木基木质素β-O-4 含量的两个控制因素:单体木酚的供应速率和供应的松柏醇单体的相对量。我们通过在β-O-4 键处切割所得木质素聚合物来分析所得木质素聚合物的计算机降解性。这些键在用于研究木质素组成的分析方法中被切断,即在制浆条件下以及在一些木质纤维素生物质预处理中进行硫代酸解和衍生化,然后进行还原裂解。

相似文献

1
Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.
Plant Physiol. 2010 Jul;153(3):1332-44. doi: 10.1104/pp.110.154468. Epub 2010 May 14.
3
Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
J Agric Food Chem. 2010 Jan 27;58(2):895-901. doi: 10.1021/jf9035172.
4
Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins.
Plant Physiol. 2017 Aug;174(4):2072-2082. doi: 10.1104/pp.17.00362. Epub 2017 Jun 6.
5
Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols.
Sci Adv. 2023 Mar 10;9(10):eade5519. doi: 10.1126/sciadv.ade5519. Epub 2023 Mar 8.
7
Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins.
Plant Physiol. 2010 Jun;153(2):569-79. doi: 10.1104/pp.110.154278. Epub 2010 Apr 28.
8
Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy.
J Agric Food Chem. 2019 Apr 17;67(15):4367-4374. doi: 10.1021/acs.jafc.8b06707. Epub 2019 Apr 9.
9
Lignin engineering.
Curr Opin Plant Biol. 2008 Jun;11(3):278-85. doi: 10.1016/j.pbi.2008.03.005. Epub 2008 Apr 21.
10
Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
J Biol Chem. 2015 Oct 30;290(44):26715-24. doi: 10.1074/jbc.M115.684217. Epub 2015 Sep 16.

引用本文的文献

1
Lignin: An Adaptable Biodegradable Polymer Used in Different Formulation Processes.
Pharmaceuticals (Basel). 2024 Oct 21;17(10):1406. doi: 10.3390/ph17101406.
2
Accessing monomers from lignin through carbon-carbon bond cleavage.
Nat Rev Chem. 2024 Nov;8(11):799-816. doi: 10.1038/s41570-024-00652-9. Epub 2024 Oct 4.
3
The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter.
Plant Cell. 2024 May 1;36(5):1257-1311. doi: 10.1093/plcell/koad325.
4
Phytophenol Dimerization Reaction: From Basic Rules to Diastereoselectivity and Beyond.
Molecules. 2022 Jul 28;27(15):4842. doi: 10.3390/molecules27154842.
5
ATR-FTIR Microspectroscopy Brings a Novel Insight Into the Study of Cell Wall Chemistry at the Cellular Level.
Front Plant Sci. 2020 Feb 21;11:105. doi: 10.3389/fpls.2020.00105. eCollection 2020.
7
Following laser induced changes of plant phenylpropanoids by Raman microscopy.
Sci Rep. 2018 Aug 7;8(1):11804. doi: 10.1038/s41598-018-30096-3.
9
Plant cell wall lignification and monolignol metabolism.
Front Plant Sci. 2013 Jul 9;4:220. doi: 10.3389/fpls.2013.00220. eCollection 2013.

本文引用的文献

1
Macromolecular replication during lignin biosynthesis.
Phytochemistry. 2010 Mar;71(4):453-62. doi: 10.1016/j.phytochem.2009.11.012. Epub 2010 Jan 4.
2
Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
J Agric Food Chem. 2010 Jan 27;58(2):895-901. doi: 10.1021/jf9035172.
3
Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana.
New Phytol. 2009;184(1):99-113. doi: 10.1111/j.1469-8137.2009.02951.x. Epub 2009 Jul 20.
4
First GM trial in Belgium since 2002.
Nat Biotechnol. 2009 Jun;27(6):506. doi: 10.1038/nbt0609-506.
5
The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.
Plant Physiol. 2009 Jun;150(2):621-35. doi: 10.1104/pp.109.137059. Epub 2009 Apr 22.
6
Internal coarse-graining of molecular systems.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6453-8. doi: 10.1073/pnas.0809908106. Epub 2009 Apr 3.
7
Lignin engineering.
Curr Opin Plant Biol. 2008 Jun;11(3):278-85. doi: 10.1016/j.pbi.2008.03.005. Epub 2008 Apr 21.
9
Fuel ethanol from cellulosic biomass.
Science. 1991 Mar 15;251(4999):1318-23. doi: 10.1126/science.251.4999.1318.
10
Lignin modification improves fermentable sugar yields for biofuel production.
Nat Biotechnol. 2007 Jul;25(7):759-61. doi: 10.1038/nbt1316. Epub 2007 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验