Gall Daniel L, Ralph John, Donohue Timothy J, Noguera Daniel R
Department of Civil & Environmental Engineering, University of Wisconsin , Madison, Wisconsin 53706, United States.
Environ Sci Technol. 2014 Oct 21;48(20):12454-63. doi: 10.1021/es503886d. Epub 2014 Oct 1.
Lignin biosynthesis occurs via radical coupling of guaiacyl and syringyl hydroxycinnamyl alcohol monomers (i.e., "monolignols") through chemical condensation with the growing lignin polymer. With each chain-extension step, monolignols invariably couple at their β-positions, generating chiral centers. Here, we report on activities of bacterial glutathione-S-transferase (GST) enzymes that cleave β-aryl ether bonds in lignin dimers that are composed of different monomeric units. Our data reveal that these sequence-related enzymes from Novosphingobium sp. strain PP1Y, Novosphingobium aromaticivorans strain DSM12444, and Sphingobium sp. strain SYK-6 have conserved functions as β-etherases, catalyzing cleavage of each of the four dimeric α-keto-β-aryl ether-linked substrates (i.e., guaiacyl-β-guaiacyl, guaiacyl-β-syringyl, syringyl-β-guaiacyl, and syringyl-β-syringyl). Although each β-etherase cleaves β-guaiacyl and β-syringyl substrates, we have found that each is stereospecific for a given β-enantiomer in a racemic substrate; LigE and LigP β-etherase homologues exhibited stereospecificity toward β(R)-enantiomers whereas LigF and its homologues exhibited β(S)-stereospecificity. Given the diversity of lignin's monomeric units and the racemic nature of lignin polymers, we propose that bacterial catabolic pathways have overcome the existence of diverse lignin-derived substrates in nature by evolving multiple enzymes with broad substrate specificities. Thus, each bacterial β-etherase is able to cleave β-guaiacyl and β-syringyl ether-linked compounds while retaining either β(R)- or β(S)-stereospecificity.
木质素生物合成通过愈创木基和紫丁香基羟基肉桂醇单体(即“单木质醇”)的自由基偶联,与不断增长的木质素聚合物进行化学缩合反应。在每一步链延伸过程中,单木质醇总是在其β位偶联,产生手性中心。在此,我们报道了细菌谷胱甘肽-S-转移酶(GST)的活性,这些酶可裂解由不同单体单元组成的木质素二聚体中的β-芳基醚键。我们的数据表明,来自新鞘氨醇菌属菌株PP1Y、新鞘氨醇菌属菌株DSM12444和鞘氨醇菌属菌株SYK-6的这些序列相关酶具有保守的β-醚酶功能,可催化四种二聚α-酮-β-芳基醚连接底物(即愈创木基-β-愈创木基、愈创木基-β-紫丁香基、紫丁香基-β-愈创木基和紫丁香基-β-紫丁香基)中的每一种的裂解。尽管每种β-醚酶都能裂解β-愈创木基和β-紫丁香基底物,但我们发现,对于外消旋底物中的给定β-对映体,每种酶都具有立体特异性;LigE和LigPβ-醚酶同系物对β(R)-对映体表现出立体特异性,而LigF及其同系物表现出β(S)-立体特异性。鉴于木质素单体单元的多样性以及木质素聚合物的外消旋性质,我们提出细菌分解代谢途径通过进化出具有广泛底物特异性的多种酶,克服了自然界中多种木质素衍生底物的存在。因此,每种细菌β-醚酶都能够裂解β-愈创木基和β-紫丁香基醚连接的化合物,同时保留β(R)-或β(S)-立体特异性。