Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
Klinik für klinische Neurophysiologie, Universitätsmedizin Göttingen, Göttingen, Germany.
EMBO J. 2019 Oct 1;38(19):e101468. doi: 10.15252/embj.2019101468. Epub 2019 Sep 10.
Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na and 1 H , in exchange with 1 K . The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K gradients, unlike their K -independent prokaryotic homologues. Glutamate transport is achieved via elevator-like translocation of the transport domain. In EAATs, glutamate-free re-translocation is prevented by an external gate remaining open until K binding closes and locks the gate. Prokaryotic Glt contains the same K -binding site, but the gate can close without K . Our study provides a comprehensive description of K -dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.
兴奋性氨基酸转运体 (EAATs) 介导胶质细胞和神经元摄取谷氨酸,以终止突触传递并确保低静息谷氨酸浓度。通过与 3 个 Na 和 1 个 H 共转运,并与 1 个 K 交换,实现有效的谷氨酸摄取。这种复杂的转运计量比的基本原理仍未得到很好的理解。我们使用分子动力学模拟和电生理实验来阐明哺乳动物 EAATs 如何利用 K 梯度,与它们无 K 依赖性的原核同系物不同。谷氨酸转运是通过运输结构域的类似电梯的移位来实现的。在 EAATs 中,外部门保持打开状态,直到 K 结合关闭并锁定门,防止谷氨酸自由再移位。原核 Glt 含有相同的 K 结合位点,但没有 K 时门也可以关闭。我们的研究全面描述了 K 依赖性谷氨酸转运,并揭示了一种迄今未知的变构偶联机制,该机制允许在不影响离子或底物结合的情况下适应转运计量比。