文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

模块化最大化在实际环境中的性能。

Performance of modularity maximization in practical contexts.

作者信息

Good Benjamin H, de Montjoye Yves-Alexandre, Clauset Aaron

机构信息

Department of Physics, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106. doi: 10.1103/PhysRevE.81.046106. Epub 2010 Apr 15.


DOI:10.1103/PhysRevE.81.046106
PMID:20481785
Abstract

Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization. Second, we show that the modularity function Q exhibits extreme degeneracies: it typically admits an exponential number of distinct high-scoring solutions and typically lacks a clear global maximum. Third, we derive the limiting behavior of the maximum modularity Qmax for one model of infinitely modular networks, showing that it depends strongly both on the size of the network and on the number of modules it contains. Finally, using three real-world metabolic networks as examples, we show that the degenerate solutions can fundamentally disagree on many, but not all, partition properties such as the composition of the largest modules and the distribution of module sizes. These results imply that the output of any modularity maximization procedure should be interpreted cautiously in scientific contexts. They also explain why many heuristics are often successful at finding high-scoring partitions in practice and why different heuristics can disagree on the modular structure of the same network. We conclude by discussing avenues for mitigating some of these behaviors, such as combining information from many degenerate solutions or using generative models.

摘要

尽管模块化最大化这一流行的模块识别技术在实践中被广泛应用,但其在实际情况下的行为和准确性尚未得到很好的理解。在此,我们对其在这类情况下的性能进行了全面的描述。首先,我们重新审视并阐明了模块化最大化的分辨率极限现象。其次,我们表明模块化函数Q表现出极端的简并性:它通常允许指数数量的不同高分解决方案,并且通常缺乏明确的全局最大值。第三,我们推导了无限模块化网络的一个模型中最大模块化Qmax的极限行为,表明它强烈依赖于网络的大小及其包含的模块数量。最后,以三个真实世界的代谢网络为例,我们表明简并解在许多但并非所有的划分属性上可能存在根本分歧,比如最大模块的组成和模块大小的分布。这些结果意味着在科学背景下,任何模块化最大化程序的输出都应谨慎解释。它们还解释了为什么许多启发式方法在实践中常常能成功找到高分划分,以及为什么不同的启发式方法可能在同一网络的模块化结构上存在分歧。我们通过讨论缓解其中一些行为的途径来结束本文,比如结合来自许多简并解的信息或使用生成模型。

相似文献

[1]
Performance of modularity maximization in practical contexts.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010-4

[2]
Communities and bottlenecks: trees and treelike networks have high modularity.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012-6

[3]
Modularity maximization as a flexible and generic framework for brain network exploratory analysis.

Neuroimage. 2021-12-1

[4]
A DC programming approach for finding communities in networks.

Neural Comput. 2014-12

[5]
Resolution limit in community detection.

Proc Natl Acad Sci U S A. 2007-1-2

[6]
Ground-state energy of the q-state Potts model: The minimum modularity.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014-11

[7]
On maximization of the modularity index in network psychometrics.

Behav Res Methods. 2023-10

[8]
Estimating the resolution limit of the map equation in community detection.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015-1

[9]
Scalable detection of statistically significant communities and hierarchies, using message passing for modularity.

Proc Natl Acad Sci U S A. 2014-12-23

[10]
Tolerating the community detection resolution limit with edge weighting.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011-5

引用本文的文献

[1]
Lesion-Induced Changes to the Network Controllability of the Right Pars Triangularis in Aphasia.

Neurobiol Lang (Camb). 2025-9-2

[2]
Multiplex nodal modularity: A novel network metric for the regional analysis of amnestic mild cognitive impairment during a working memory binding task.

PLoS One. 2025-8-22

[3]
Time-varying synergy/redundancy dominance in the human cerebral cortex.

J Phys Complex. 2025-3-1

[4]
Charting the brain networks of impulsivity: Meta-analytic synthesis, functional connectivity modelling, and neurotransmitter associations.

Imaging Neurosci (Camb). 2024-9-25

[5]
Time-resolved functional connectivity during visuomotor graph learning.

bioRxiv. 2025-7-10

[6]
Vulnerable connectivity caused by local communities in spatial networks.

PLoS One. 2025-7-2

[7]
Somatomotor Disconnection Links Sleep Duration With Socioeconomic Context, Screen Time, Cognition, and Psychopathology.

Biol Psychiatry Glob Open Sci. 2025-4-30

[8]
Altered dynamic reconfiguration of brain functional networks during gaming and deprivation in individuals with internet gaming disorder.

J Behav Addict. 2025-5-13

[9]
Complex networks applied to political analysis: Group voting behavior in the Brazilian congress.

PLoS One. 2025-4-14

[10]
Characterization of Neural Network Connectivity and Modularity of Pigeon Nidopallium Caudolaterale During Target Detection.

Animals (Basel). 2025-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索