Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome 00185, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
Neuroimage. 2021 Dec 1;244:118607. doi: 10.1016/j.neuroimage.2021.118607. Epub 2021 Oct 2.
The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several strategies in which the "out-of-the-box" version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches for detecting "space-independent" modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications.
大脑网络的模块化结构支持专业化的信息处理、复杂的动力学和高效的空间嵌入。个体间模块化结构的差异与表现、疾病和发展有关。有许多数据驱动的方法用于检测和比较模块化结构,其中最流行的是模块化最大化。尽管模块化最大化是一个通用框架,可以进行修改和重新参数化以解决特定于领域的研究问题,但它在神经科学数据集上的应用迄今为止还很有限。在这里,我们强调了几种策略,通过这些策略可以扩展“现成”的模块化最大化版本来解决特定于神经科学的问题。首先,我们提出了用于检测“与空间无关”模块的方法,并展示了如何将模块化最大化应用于有符号矩阵。接下来,我们表明模块化最大化框架非常适合检测任务和条件特定的模块。最后,我们强调了多层模型在跨时间、任务、主体和模态检测和跟踪模块方面的作用。总之,模块化最大化是一个灵活和通用的框架,可以适应广泛的假设来检测模块化结构。本文强调了未来研究和应用的多个前沿领域。