最大化模块性作为一种灵活通用的脑网络探索性分析框架。
Modularity maximization as a flexible and generic framework for brain network exploratory analysis.
机构信息
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome 00185, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
出版信息
Neuroimage. 2021 Dec 1;244:118607. doi: 10.1016/j.neuroimage.2021.118607. Epub 2021 Oct 2.
The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several strategies in which the "out-of-the-box" version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches for detecting "space-independent" modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications.
大脑网络的模块化结构支持专业化的信息处理、复杂的动力学和高效的空间嵌入。个体间模块化结构的差异与表现、疾病和发展有关。有许多数据驱动的方法用于检测和比较模块化结构,其中最流行的是模块化最大化。尽管模块化最大化是一个通用框架,可以进行修改和重新参数化以解决特定于领域的研究问题,但它在神经科学数据集上的应用迄今为止还很有限。在这里,我们强调了几种策略,通过这些策略可以扩展“现成”的模块化最大化版本来解决特定于神经科学的问题。首先,我们提出了用于检测“与空间无关”模块的方法,并展示了如何将模块化最大化应用于有符号矩阵。接下来,我们表明模块化最大化框架非常适合检测任务和条件特定的模块。最后,我们强调了多层模型在跨时间、任务、主体和模态检测和跟踪模块方面的作用。总之,模块化最大化是一个灵活和通用的框架,可以适应广泛的假设来检测模块化结构。本文强调了未来研究和应用的多个前沿领域。