Suppr超能文献

布鲁塞尔振子模型中的随机图灵模式。

Stochastic Turing patterns in the Brusselator model.

作者信息

Biancalani Tommaso, Fanelli Duccio, Di Patti Francesca

机构信息

Dipartimento di Fisica, Università degli Studi di Firenze, via G Sansone 1, 50019 Sesto Fiorentino, Florence, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046215. doi: 10.1103/PhysRevE.81.046215. Epub 2010 Apr 27.

Abstract

A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters region. When determining the Turing condition for instability, we pay particular attention to the role of cross-diffusive terms, often neglected in the heuristic derivation of reaction-diffusion schemes. Stochastic fluctuations are shown to give rise to spatially ordered solutions, sharing the same quantitative characteristic of the mean-field based Turing scenario, in term of excited wavelengths. Interestingly, the region of parameter yielding to the stochastic self-organization is wider than that determined via the conventional Turing approach, suggesting that the condition for spatial order to appear can be less stringent than customarily believed.

摘要

提出了 Brusselator 模型的一个随机版本,并通过系统规模展开进行研究。推导了平均场方程,结果表明在特定参数区域内会产生有组织的图灵模式。在确定不稳定性的图灵条件时,我们特别关注交叉扩散项的作用,在反应扩散方案的启发式推导中,交叉扩散项常常被忽略。结果表明,随机涨落会产生空间有序解,在激发波长方面,这些解与基于平均场的图灵情形具有相同的定量特征。有趣的是,产生随机自组织的参数区域比通过传统图灵方法确定的区域更宽,这表明出现空间有序的条件可能比通常认为的要宽松。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验