Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden.
PLoS Biol. 2010 May 11;8(5):e1000368. doi: 10.1371/journal.pbio.1000368.
The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5-6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5-6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, "Ap cluster cells" are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification.
不同轴向水平的不同神经元亚型的产生依赖于前后和时间线索。然而,这些线索之间的整合理解得很差。在果蝇中枢神经系统中,节段重复的神经母细胞 5-6 仅在胸段产生一组独特的神经元,即 Apterous(Ap)簇。最近的研究已经确定了精细的遗传途径来控制这些神经元的产生。这些见解,加上新的标记物,为解决前后线索和时间线索如何整合以产生特定于节段的神经元亚型提供了独特的机会。我们发现 Pbx/Meis、Hox 和时间基因以三种不同的方式起作用。在后部,Pbx/Meis 和后部 Hox 基因通过触发细胞周期退出,在早期时间窗口内阻止谱系进展。由于 Ap 神经元在胸段 5-6 谱系中晚期产生,这阻止了腹部 Ap 簇细胞的产生。在胸部,Pbx/Meis 和前 Hox 基因与晚期时间基因整合,通过激活特定的前馈回路来指定 Ap 簇。在脑段,“Ap 簇细胞”存在,但缺乏适当的 Hox 和时间编码。只有通过同时改变所有节段的 Hox 和时间基因活性,才能在整个神经轴上产生 Ap 簇。这项研究提供了迄今为止对整个神经轴上已识别神经母细胞谱系的第一个详细分析,并证实了躯干神经母细胞的线性同源物存在于整个发育中的大脑的概念。我们还首次深入了解了 Hox/Pbx/Meis 的前后线索和时间线索如何在一个定义的谱系中整合,以仅在胸段指定独特的神经元身份。这项研究揭示了前后线索和时间线索在谱系控制和细胞命运指定方面具有惊人的局限性,但却具有多方面的功能。