Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Pamplona, Spain.
Bioessays. 2010 Jun;32(6):461-7. doi: 10.1002/bies.201000020.
During the last few months, several pioneer genome-wide transcriptomic, proteomic and metabolomic studies have revolutionised the understanding of bacterial biological processes, leading to a picture that resembles eukaryotic complexity. Technological advances such as next-generation high-throughput sequencing and high-density oligonucleotide microarrays have allowed the determination, in several bacteria, of the entire boundaries of all expressed transcripts. Consequently, novel RNA-mediated regulatory mechanisms have been discovered including multifunctional RNAs. Moreover, resolution of bacterial proteome organisation (interactome) and global protein localisation (localizome) have unveiled an unanticipated complexity that highlights the significance of protein multifunctionality and localisation in the cell. Also, analysis of a complete bacterial metabolic network has again revealed a high fraction of multifunctional enzymes and an unexpectedly high level of metabolic responses and adaptation. Altogether, these novel approaches have permitted the deciphering of the entire physiological landscape of one of the smallest bacteria, Mycoplasma pneumoniae. Here, we summarise and discuss recent findings aimed at defining the blueprint of any prokaryote.
在过去的几个月里,几项开创性的全基因组转录组学、蛋白质组学和代谢组学研究彻底改变了人们对细菌生物学过程的理解,使人们对细菌的认识类似于真核生物的复杂性。技术进步,如高通量测序和高密度寡核苷酸微阵列的下一代技术,使得在几种细菌中确定所有表达转录本的整个边界成为可能。因此,发现了包括多功能 RNA 在内的新型 RNA 介导的调控机制。此外,细菌蛋白质组组织(相互作用组)和全局蛋白质定位(局部组)的解析揭示了一种出乎意料的复杂性,强调了蛋白质多功能性和定位在细胞中的重要性。此外,对完整细菌代谢网络的分析再次揭示了多功能酶的高比例以及代谢反应和适应的意外高水平。总之,这些新方法使得可以破译最小的细菌之一肺炎支原体的整个生理景观。在这里,我们总结和讨论了最近的发现,旨在定义任何原核生物的蓝图。