Suppr超能文献

核小体DNA中的序列周期性与固有曲率。

Sequence periodicity in nucleosomal DNA and intrinsic curvature.

作者信息

Nair T Murlidharan

机构信息

Department of Biological sciences, Indiana University South Bend, 1700 Mishawaka Ave, South Bend, IN-46634, USA.

出版信息

BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S8. doi: 10.1186/1472-6807-10-S1-S8.

Abstract

BACKGROUND

Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures.

RESULTS

Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature.

CONCLUSIONS

The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

摘要

背景

细胞核中包含的大多数真核生物DNA是通过将DNA缠绕在组蛋白八聚体上进行包装的。组蛋白普遍存在并与染色体DNA的大多数区域结合。为了使DNA顺利缠绕在组蛋白八聚体上,DNA双链体应能够变形并具有内在曲率。DNA的可变形性是碱基对堆积不平行的结果。碱基对之间的堆积相互作用取决于序列。堆积能量越高,DNA螺旋越刚性,因此可以自然地预期,参与缠绕组蛋白八聚体的序列应该是未堆积的并且具有内在曲率。内在曲率已被证明由某些二核苷酸的周期性重复所决定。几项针对核小体位置图谱绘制的全基因组研究揭示了与某些序列片段相关的周期性。在当前研究中,对这些序列进行了分析,以了解它们的序列依赖性结构。

结果

使用DNA曲率理论模型分析了与秀丽隐杆线虫和鸡的146个碱基核小体核心DNA序列相关的高阶DNA结构和分子弯曲位点的分布。通过对序列进行循环置换计算得到的曲率分散表明,分子弯曲位点在整个核小体核心区域是离域的,并且具有不同程度的内在曲率。

结论

根据序列计算得到的与秀丽隐杆线虫和鸡的核小体相关的高阶结构显示,DNA轴的偏差存在异质性。结果表明,不同程度的上下文依赖性曲率可能与核小体DNA相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b36a/2873831/f7b77c7d1f0d/1472-6807-10-S1-S8-1.jpg

相似文献

1
Sequence periodicity in nucleosomal DNA and intrinsic curvature.
BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S8. doi: 10.1186/1472-6807-10-S1-S8.
2
Structural mechanics of DNA wrapping in the nucleosome.
J Mol Biol. 2010 Feb 19;396(2):264-79. doi: 10.1016/j.jmb.2009.11.040. Epub 2009 Nov 27.
3
DNA curvature of the tobacco GRS repetitive sequence family and its relation to nucleosome positioning.
J Biomol Struct Dyn. 1995 Apr;12(5):1103-19. doi: 10.1080/07391102.1995.10508800.
4
Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability.
J Mol Biol. 1999 Mar 12;286(5):1293-301. doi: 10.1006/jmbi.1998.2575.
5
Categorical spectral analysis of periodicity in nucleosomal DNA.
Nucleic Acids Res. 2016 Mar 18;44(5):2047-57. doi: 10.1093/nar/gkw101. Epub 2016 Feb 17.
7
Visible periodicity of strong nucleosome DNA sequences.
J Biomol Struct Dyn. 2015;33(1):1-9. doi: 10.1080/07391102.2013.855143. Epub 2013 Nov 22.
9
Single-base resolution nucleosome mapping on DNA sequences.
J Biomol Struct Dyn. 2010 Aug;28(1):107-22. doi: 10.1080/07391102.2010.10507347.
10
Computational analysis suggests a highly bendable, fragile structure for nucleosomal DNA.
Gene. 2011 May 1;476(1-2):10-4. doi: 10.1016/j.gene.2011.02.004. Epub 2011 Feb 19.

引用本文的文献

1
Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties.
Plant Physiol. 2016 Sep;172(1):372-88. doi: 10.1104/pp.16.00789. Epub 2016 Jul 25.
2
Apoptotic lymphocytes of H. sapiens lose nucleosomes in GC-rich promoters.
PLoS Comput Biol. 2014 Jul 31;10(7):e1003760. doi: 10.1371/journal.pcbi.1003760. eCollection 2014 Jul.

本文引用的文献

1
Base pair stacking in nucleosome DNA and bendability sequence pattern.
J Theor Biol. 2010 Apr 7;263(3):337-9. doi: 10.1016/j.jtbi.2009.11.020. Epub 2009 Dec 2.
3
Poly(dA:dT) tracts: major determinants of nucleosome organization.
Curr Opin Struct Biol. 2009 Feb;19(1):65-71. doi: 10.1016/j.sbi.2009.01.004. Epub 2009 Feb 7.
4
Nucleosome positioning and gene regulation: advances through genomics.
Nat Rev Genet. 2009 Mar;10(3):161-72. doi: 10.1038/nrg2522.
5
Nucleosome DNA bendability matrix (C. elegans).
J Biomol Struct Dyn. 2009 Feb;26(4):403-11. doi: 10.1080/07391102.2009.10507255.
6
The DNA-encoded nucleosome organization of a eukaryotic genome.
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
7
Sequence structure of hidden 10.4-base repeat in the nucleosomes of C. elegans.
J Biomol Struct Dyn. 2008 Dec;26(3):273-82. doi: 10.1080/07391102.2008.10531241.
8
Nucleosome organization in the Drosophila genome.
Nature. 2008 May 15;453(7193):358-62. doi: 10.1038/nature06929. Epub 2008 Apr 13.
9
Dynamic regulation of nucleosome positioning in the human genome.
Cell. 2008 Mar 7;132(5):887-98. doi: 10.1016/j.cell.2008.02.022.
10
A high-resolution atlas of nucleosome occupancy in yeast.
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验