Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan.
Plant Physiol. 2010 Jul;153(3):1085-97. doi: 10.1104/pp.110.157909. Epub 2010 May 20.
Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.
赤霉素(GAs)是一类由贝壳杉烯通过贝壳杉烯酸生物合成的二萜植物激素。GAs 在种子植物中广泛存在。GA 信号被 GID1 GA 受体/DELLA 抑制物途径感知和转导。石松属植物卷柏合成 GA,并具有功能性的 GID1-DELLA 信号组分。相比之下,在苔藓植物拟南芥中没有发现 GA 或功能上同源的 GID1-DELLA 成分。然而,P. patens 产生贝壳杉烯,这是 GA 的共同前体,并且具有功能性的贝壳杉烯合酶 PpCPS/KS。为了评估贝壳杉烯在 P. patens 中的生物学作用,我们生成了一个不积累贝壳杉烯的 PpCPS/KS 敲除突变体。表型分析表明,突变体在叶绿体向茎原细胞的分化中存在缺陷。气相色谱-质谱分析显示,P. patens 产生贝壳杉烯酸,这是 GA 生物合成途径中的一种贝壳杉烯代谢物。破坏突变体的表型缺陷可通过施用贝壳杉烯或贝壳杉烯酸得到恢复,这表明贝壳杉烯酸或其下游代谢物参与了原丝体分化。GA 生物合成中贝壳杉烯氧化酶抑制剂 uniocnazole 的处理模拟了 PpCPS/KS 突变体的原丝体表型,这些表型也可通过贝壳杉烯酸处理得到恢复。有趣的是,蕨类植物雄配子体的花药育性物质 GA(9) 甲酯挽救了敲除突变体的原丝体缺陷,而 GA(3) 和 GA(4),这两种物质都是被子植物中的活性 GA,没有这种作用。我们的结果表明,苔藓植物 P. patens 利用贝壳杉烯的二萜代谢物作为内源性发育调节剂,并为 GA 功能在陆地植物中的进化提供了见解。