Department of Statistics, Chonnam National University, Gwangju 500-757, South Korea.
IEEE Trans Pattern Anal Mach Intell. 2010 Jul;32(7):1298-309. doi: 10.1109/TPAMI.2009.149.
Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data, where the number of observations n is not very large relative to their dimension p. In practice, there is often the need to further reduce the number of parameters in the specification of the component-covariance matrices. To this end, we propose the use of common component-factor loadings, which considerably reduces further the number of parameters. Moreover, it allows the data to be displayed in low--dimensional plots.
混合因子分析器可用于对高维数据进行基于模型的密度估计,其中观测值 n 的数量相对于其维度 p 不是很大。在实践中,通常需要进一步减少分量协方差矩阵指定中的参数数量。为此,我们建议使用公共分量因子载荷,这将进一步大大减少参数数量。此外,它允许在低维图中显示数据。