Suppr超能文献

原子力显微镜揭示了T4溶菌酶的平行机械展开途径:动力学分配机制的证据。

Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism.

作者信息

Peng Qing, Li Hongbin

机构信息

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1.

出版信息

Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1885-90. doi: 10.1073/pnas.0706775105. Epub 2008 Feb 6.

Abstract

Kinetic partitioning is predicted to be a general mechanism for proteins to fold into their well defined native three-dimensional structure from unfolded states following multiple folding pathways. However, experimental evidence supporting this mechanism is still limited. By using single-molecule atomic force microscopy, here we report experimental evidence supporting the kinetic partitioning mechanism for mechanical unfolding of T4 lysozyme, a small protein composed of two subdomains. We observed that on stretching from its N and C termini, T4 lysozyme unfolds by multiple distinct unfolding pathways: the majority of T4 lysozymes unfold in an all-or-none fashion by overcoming a dominant unfolding kinetic barrier; and a small fraction of T4 lysozymes unfold in three-state fashion involving unfolding intermediate states. The three-state unfolding pathways do not follow well defined routes, instead they display variability and diversity in individual unfolding pathways. The unfolding intermediate states are local energy minima along the mechanical unfolding pathways and are likely to result from the residual structures present in the two subdomains after crossing the main unfolding barrier. These results provide direct evidence for the kinetic partitioning of the mechanical unfolding pathways of T4 lysozyme, and the complex unfolding behaviors reflect the stochastic nature of kinetic barrier rupture in mechanical unfolding processes. Our results demonstrate that single-molecule atomic force microscopy is an ideal tool to investigate the folding/unfolding dynamics of complex multimodule proteins that are otherwise difficult to study using traditional methods.

摘要

动力学分配被认为是蛋白质从非折叠状态通过多种折叠途径折叠成其明确的天然三维结构的一种普遍机制。然而,支持这一机制的实验证据仍然有限。通过使用单分子原子力显微镜,我们在此报告支持T4溶菌酶机械展开的动力学分配机制的实验证据,T4溶菌酶是一种由两个亚结构域组成的小蛋白质。我们观察到,从其N端和C端拉伸时,T4溶菌酶通过多种不同的展开途径展开:大多数T4溶菌酶通过克服一个主要的展开动力学障碍以全或无的方式展开;一小部分T4溶菌酶以涉及展开中间状态的三态方式展开。三态展开途径并不遵循明确的路线,相反,它们在个体展开途径中表现出变异性和多样性。展开中间状态是沿着机械展开途径的局部能量最小值,很可能是由于越过主要展开障碍后两个亚结构域中存在的残余结构所致。这些结果为T4溶菌酶机械展开途径的动力学分配提供了直接证据,复杂的展开行为反映了机械展开过程中动力学障碍破裂的随机性。我们的结果表明,单分子原子力显微镜是研究复杂多模块蛋白质折叠/展开动力学的理想工具,而使用传统方法很难对这些蛋白质进行研究。

相似文献

1
Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1885-90. doi: 10.1073/pnas.0706775105. Epub 2008 Feb 6.
2
Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme.
Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139-44. doi: 10.1073/pnas.97.1.139.
6
Subdomain interactions as a determinant in the folding and stability of T4 lysozyme.
Protein Sci. 1998 Jan;7(1):96-104. doi: 10.1002/pro.5560070110.
7
Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.
J Mol Biol. 2011 Sep 30;412(4):698-709. doi: 10.1016/j.jmb.2011.07.049. Epub 2011 Aug 3.
8
The energetics of T4 lysozyme reveal a hierarchy of conformations.
Nat Struct Biol. 1999 Nov;6(11):1072-8. doi: 10.1038/14956.

引用本文的文献

1
Protein folding mechanism revealed by single-molecule force spectroscopy experiments.
Biophys Rep. 2021 Oct 31;7(5):399-412. doi: 10.52601/bpr.2021.210024.
2
Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
Acta Biomater. 2023 Aug;166:326-345. doi: 10.1016/j.actbio.2023.04.042. Epub 2023 May 2.
3
Single-molecule displacement assay reveals strong binding of polyvalent dendrimer ligands to telomeric G-quadruplex.
Anal Biochem. 2022 Jul 15;649:114693. doi: 10.1016/j.ab.2022.114693. Epub 2022 Apr 29.
4
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding.
Int J Mol Sci. 2022 Feb 24;23(5):2485. doi: 10.3390/ijms23052485.
5
Interpretation of Single-Molecule Force Experiments on Proteins Using Normal Mode Analysis.
Nanomaterials (Basel). 2021 Oct 22;11(11):2795. doi: 10.3390/nano11112795.
8
Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
Protein Sci. 2020 Feb;29(2):360-377. doi: 10.1002/pro.3795. Epub 2019 Dec 23.
9
Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy.
ACS Omega. 2016 Dec 13;1(6):1205-1219. doi: 10.1021/acsomega.6b00202. eCollection 2016 Dec 31.
10
Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase.
Biophys J. 2018 Jul 3;115(1):46-58. doi: 10.1016/j.bpj.2018.05.028.

本文引用的文献

1
Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9278-83. doi: 10.1073/pnas.0700351104. Epub 2007 May 21.
2
Real-time control of the energy landscape by force directs the folding of RNA molecules.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7039-44. doi: 10.1073/pnas.0702137104. Epub 2007 Apr 16.
5
The folding pathway of T4 lysozyme: the high-resolution structure and folding of a hidden intermediate.
J Mol Biol. 2007 Jan 19;365(3):870-80. doi: 10.1016/j.jmb.2006.10.047. Epub 2006 Oct 21.
6
The folding pathway of T4 lysozyme: an on-pathway hidden folding intermediate.
J Mol Biol. 2007 Jan 19;365(3):881-91. doi: 10.1016/j.jmb.2006.10.048. Epub 2006 Oct 21.
7
Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy.
J Biol Chem. 2006 Dec 29;281(52):40010-4. doi: 10.1074/jbc.M609890200. Epub 2006 Nov 2.
8
Anisotropic deformation response of single protein molecules.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12724-8. doi: 10.1073/pnas.0602995103. Epub 2006 Aug 14.
9
Details of the partial unfolding of T4 lysozyme on quartz using site-directed spin labeling.
Angew Chem Int Ed Engl. 2006 Jun 2;45(23):3874-7. doi: 10.1002/anie.200600008.
10
Nonmechanical protein can have significant mechanical stability.
Angew Chem Int Ed Engl. 2006 Jan 16;45(4):642-5. doi: 10.1002/anie.200502623.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验