Suppr超能文献

小分子热休克蛋白 20 RSI2 与番茄抗病蛋白 I-2 相互作用,并对其稳定性和功能有需求。

The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2.

机构信息

Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

出版信息

Plant J. 2010 Aug;63(4):563-72. doi: 10.1111/j.1365-313X.2010.04260.x.

Abstract

Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I-2) as a protein that interacts with the LRR domain of the tomato R protein I-2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP-independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2-related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto-active variants of I-2 and Mi-1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I-2 and Mi-1 protein stability was examined. RSI2 silencing compromised the accumulation of full-length I-2 in planta, but did not affect Mi-1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full-length I-2 accumulation and a reduction in Mi-1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I-2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I-2 protein using different molecular mechanisms. We conclude that I-2 protein function requires RSI2, either through direct interaction with, and stabilization of I-2 protein or by affecting signalling components involved in initiation of the hypersensitive response.

摘要

植物的种特异性疾病抗性取决于抗性 (R) 基因的存在。大多数 R 基因编码含有 C 端富含亮氨酸重复 (LRR) 的 NB-ARC-LRR 蛋白。在与 LRR 结构域相互作用的少数几种蛋白质中,大多数具有拟(共)伴侣活性。在这里,我们报告了 RSI2(I-2 稳定性所必需的)作为与番茄 R 蛋白 I-2 的 LRR 结构域相互作用的蛋白质的鉴定。RSI2 属于小热休克蛋白 (sHSP 或 HSP20) 家族。HSP20 是一种 ATP 非依赖性伴侣蛋白,与靶蛋白形成寡聚复合物以防止展开和随后的聚集。在 Nicotiana benthamiana 中沉默与 RSI2 相关的 HSP20 会损害由 I-2 和 Mi-1(另一种番茄 R 蛋白)的自动活性变体正常诱导的过敏反应。由于许多 HSP20 具有伴侣特性,因此研究了 RSI2 和其他 R 蛋白 (共) 伴侣在 I-2 和 Mi-1 蛋白稳定性中的作用。RSI2 沉默会损害 I-2 在植物体内全长的积累,但不影响 Mi-1 水平。沉默热休克蛋白 90 (HSP90) 和 SGT1 导致全长 I-2 积累几乎完全丧失,Mi-1 蛋白水平降低。与 SGT1 和 HSP90 相反,RSI2 沉默导致 I-2 降解产物的积累。这种差异表明 RSI2 和 HSP90/SGT1 采用不同的分子机制来伴侣 I-2 蛋白。我们得出结论,I-2 蛋白功能需要 RSI2,要么通过与 I-2 蛋白直接相互作用和稳定,要么通过影响参与过敏反应起始的信号成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6355/2988412/37dbb21fb56e/tpj0063-0563-f1.jpg

相似文献

3
The MI-1-mediated pest resistance requires Hsp90 and Sgt1.
Plant Physiol. 2007 May;144(1):312-23. doi: 10.1104/pp.107.097246. Epub 2007 Mar 9.
7
An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins.
Plant J. 2007 Apr;50(1):14-28. doi: 10.1111/j.1365-313X.2007.03027.x. Epub 2007 Mar 5.
9
The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.
Plant J. 2011 Aug;67(3):459-71. doi: 10.1111/j.1365-313X.2011.04609.x. Epub 2011 Jun 6.
10
CDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response.
Mol Plant Microbe Interact. 2006 Jun;19(6):567-76. doi: 10.1094/MPMI-19-0567.

引用本文的文献

1
TaHSP18.6 and TaSRT1 interact to confer resistance to crown rot by regulating the auxin content in common wheat.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2500029122. doi: 10.1073/pnas.2500029122. Epub 2025 Jul 9.
3
Multiplexed Host-Induced Gene Silencing of Genes Confers Aflatoxin Resistance in Groundnut.
Toxins (Basel). 2023 May 5;15(5):319. doi: 10.3390/toxins15050319.
4
seed transmission efficiency is influenced by plant defense response mechanisms.
Front Plant Sci. 2022 Oct 21;13:1025698. doi: 10.3389/fpls.2022.1025698. eCollection 2022.
5
Histological and molecular responses of Vigna angularis to Uromyces vignae infection.
BMC Plant Biol. 2022 Oct 14;22(1):489. doi: 10.1186/s12870-022-03869-2.
8
Deciphering the Crosstalk Mechanisms of Wheat-Stem Rust Pathosystem: Genome-Scale Prediction Unravels Novel Host Targets.
Front Plant Sci. 2022 Jun 21;13:895480. doi: 10.3389/fpls.2022.895480. eCollection 2022.
10
SLI1 confers broad-spectrum resistance to phloem-feeding insects.
Plant Cell Environ. 2021 Aug;44(8):2765-2776. doi: 10.1111/pce.14064. Epub 2021 May 5.

本文引用的文献

2
STANDing strong, resistance proteins instigators of plant defence.
Curr Opin Plant Biol. 2009 Aug;12(4):427-36. doi: 10.1016/j.pbi.2009.03.001. Epub 2009 Apr 24.
3
Structure-function analysis of the NB-ARC domain of plant disease resistance proteins.
J Exp Bot. 2008;59(6):1383-97. doi: 10.1093/jxb/ern045. Epub 2008 Apr 4.
4
Chaperones in control of protein disaggregation.
EMBO J. 2008 Jan 23;27(2):328-35. doi: 10.1038/sj.emboj.7601970.
7
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
8
Complexity of the heat stress response in plants.
Curr Opin Plant Biol. 2007 Jun;10(3):310-6. doi: 10.1016/j.pbi.2007.04.011. Epub 2007 May 4.
9
Structure and function of resistance proteins in solanaceous plants.
Annu Rev Phytopathol. 2007;45:43-72. doi: 10.1146/annurev.phyto.45.062806.094430.
10
The MI-1-mediated pest resistance requires Hsp90 and Sgt1.
Plant Physiol. 2007 May;144(1):312-23. doi: 10.1104/pp.107.097246. Epub 2007 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验