Suppr超能文献

用于模拟流感 A 病毒在药物压力下耐药性的体外系统。

In vitro system for modeling influenza A virus resistance under drug pressure.

机构信息

Antiviral Pharmacodynamics Laboratory, Center for Emerging Infections and Host Defense, Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12208, USA.

出版信息

Antimicrob Agents Chemother. 2010 Aug;54(8):3442-50. doi: 10.1128/AAC.01385-09. Epub 2010 May 24.

Abstract

One of the biggest challenges in the effort to treat and contain influenza A virus infections is the emergence of resistance during treatment. It is well documented that resistance to amantadine arises rapidly during the course of treatment due to mutations in the gene coding for the M2 protein. To address this problem, it is critical to develop experimental systems that can accurately model the selection of resistance under drug pressure as seen in humans. We used the hollow-fiber infection model (HFIM) system to examine the effect of amantadine on the replication of influenza virus, A/Albany/1/98 (H3N2), grown in MDCK cells. At 24 and 48 h postinfection, virus replication was inhibited in a dose-dependent fashion. At 72 and 96 h postinfection, virus replication was no longer inhibited, suggesting the emergence of amantadine-resistant virus. Sequencing of the M2 gene revealed that mutations appeared at between 48 and 72 h of drug treatment and that the mutations were identical to those identified in the clinic for amantadine-resistant viruses (e.g., V27A, A30T, and S31N). Interestingly, we found that the type of mutation was strongly affected by the dose of the drug. The data suggest that the HFIM is a good model for influenza virus infection and resistance generation in humans. The HFIM has the advantage of being a highly controlled system where multiplicity parameters can be directly and accurately controlled and measured.

摘要

治疗和控制甲型流感病毒感染的最大挑战之一是治疗过程中出现耐药性。有大量文献记载,由于 M2 蛋白基因编码突变,金刚烷胺在治疗过程中迅速产生耐药性。为了解决这个问题,开发能够准确模拟人类药物压力下耐药性选择的实验系统至关重要。我们使用中空纤维感染模型(HFIM)系统来研究金刚烷胺对 MDCK 细胞中培养的流感病毒 A/Albany/1/98(H3N2)复制的影响。在感染后 24 和 48 小时,病毒复制呈剂量依赖性抑制。在感染后 72 和 96 小时,病毒复制不再受到抑制,表明出现了金刚烷胺耐药病毒。对 M2 基因的测序显示,突变出现在药物治疗的 48 至 72 小时之间,并且这些突变与临床鉴定的金刚烷胺耐药病毒(例如 V27A、A30T 和 S31N)相同。有趣的是,我们发现突变的类型强烈受到药物剂量的影响。数据表明,HFIM 是研究人类流感病毒感染和耐药性产生的良好模型。HFIM 的优点是它是一个高度可控的系统,其中多重参数可以直接和准确地控制和测量。

相似文献

1
In vitro system for modeling influenza A virus resistance under drug pressure.
Antimicrob Agents Chemother. 2010 Aug;54(8):3442-50. doi: 10.1128/AAC.01385-09. Epub 2010 May 24.
3
Molecular analysis of amantadine-resistant influenza A (H1N1 pdm09) virus isolated from slum dwellers of Dhaka, Bangladesh.
Virus Genes. 2017 Jun;53(3):377-385. doi: 10.1007/s11262-017-1447-x. Epub 2017 Apr 11.
4
Amantadine resistance in relation to the evolution of influenza A(H3N2) viruses in Iran.
Antiviral Res. 2010 Nov;88(2):193-6. doi: 10.1016/j.antiviral.2010.08.013. Epub 2010 Sep 9.
5
Amantadine-resistant influenza A (H3N2) viruses in Iran.
Acta Virol. 2009;53(2):135-8. doi: 10.4149/av_2009_02_135.
6
Rare influenza A (H3N2) variants with reduced sensitivity to antiviral drugs.
Emerg Infect Dis. 2010 Mar;16(3):493-6. doi: 10.3201/eid1603.091321.
7
Emergence and phylogenetic relationships of amantadine-resistant human H3N2 influenza A viruses in Germany in the season 2005/2006.
Int J Antimicrob Agents. 2008 Aug;32(2):192-5. doi: 10.1016/j.ijantimicag.2008.03.007. Epub 2008 Jun 20.
9
Drug susceptibility of influenza A/H3N2 strains co-circulating during 2009 influenza pandemic: first report from Mumbai.
Infect Genet Evol. 2015 Jan;29:75-81. doi: 10.1016/j.meegid.2014.11.005. Epub 2014 Nov 11.

引用本文的文献

3
Applications of the hollow-fibre infection model (HFIM) in viral infection studies.
J Antimicrob Chemother. 2022 Dec 23;78(1):8-20. doi: 10.1093/jac/dkac394.
4
Combining LC-MS/MS and hollow-fiber infection model for real-time quantitation of ampicillin to antimicrobial resistance.
Future Sci OA. 2018 Oct 17;5(1):FSO349. doi: 10.4155/fsoa-2018-0055. eCollection 2019 Jan.
5
Clinical Regimens of Favipiravir Inhibit Zika Virus Replication in the Hollow-Fiber Infection Model.
Antimicrob Agents Chemother. 2018 Aug 27;62(9). doi: 10.1128/AAC.00967-18. Print 2018 Sep.
7
Profiling the in vitro drug-resistance mechanism of influenza A viruses towards the AM2-S31N proton channel blockers.
Antiviral Res. 2018 May;153:10-22. doi: 10.1016/j.antiviral.2018.03.002. Epub 2018 Mar 6.
10
Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.
PLoS One. 2017 Jul 10;12(7):e0180582. doi: 10.1371/journal.pone.0180582. eCollection 2017.

本文引用的文献

1
Emergence of a novel swine-origin influenza A (H1N1) virus in humans.
N Engl J Med. 2009 Jun 18;360(25):2605-15. doi: 10.1056/NEJMoa0903810. Epub 2009 May 7.
3
Influenza antiviral resistance testing in new york and wisconsin, 2006 to 2008: methodology and surveillance data.
J Clin Microbiol. 2009 May;47(5):1372-8. doi: 10.1128/JCM.01993-08. Epub 2009 Mar 25.
4
Effects of double combinations of amantadine, oseltamivir, and ribavirin on influenza A (H5N1) virus infections in cell culture and in mice.
Antimicrob Agents Chemother. 2009 May;53(5):2120-8. doi: 10.1128/AAC.01012-08. Epub 2009 Mar 9.
5
Global transmission of oseltamivir-resistant influenza.
N Engl J Med. 2009 Mar 5;360(10):953-6. doi: 10.1056/NEJMp0900648. Epub 2009 Mar 2.
6
Antivirals and influenza: frequency of resistance.
Pediatr Infect Dis J. 2008 Oct;27(10 Suppl):S110-2. doi: 10.1097/INF.0b013e318168b739.
7
Modeling amantadine treatment of influenza A virus in vitro.
J Theor Biol. 2008 Sep 21;254(2):439-51. doi: 10.1016/j.jtbi.2008.05.031. Epub 2008 Jul 23.
10
Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide.
J Infect Dis. 2007 Jul 15;196(2):249-57. doi: 10.1086/518936. Epub 2007 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验