United States Department of Agriculture, Agricultural Research Service, Water Management Research Division, Parlier, California 93648, USA.
Plant Physiol. 2010 Aug;153(4):1630-52. doi: 10.1104/pp.110.156570. Epub 2010 May 24.
The molecular mechanisms responsible for selenium (Se) tolerance and hyperaccumulation were studied in the Se hyperaccumulator Stanleya pinnata (Brassicaceae) by comparing it with the related secondary Se accumulator Stanleya albescens using a combination of physiological, structural, genomic, and biochemical approaches. S. pinnata accumulated 3.6-fold more Se and was tolerant to 20 microm selenate, while S. albescens suffered reduced growth, chlorosis and necrosis, impaired photosynthesis, and high levels of reactive oxygen species. Levels of ascorbic acid, glutathione, total sulfur, and nonprotein thiols were higher in S. pinnata, suggesting that Se tolerance may in part be due to increased antioxidants and up-regulated sulfur assimilation. S. pinnata had higher selenocysteine methyltransferase protein levels and, judged from liquid chromatography-mass spectrometry, mainly accumulated the free amino acid methylselenocysteine, while S. albescens accumulated mainly the free amino acid selenocystathionine. S. albescens leaf x-ray absorption near-edge structure scans mainly detected a carbon-Se-carbon compound (presumably selenocystathionine) in addition to some selenocysteine and selenate. Thus, S. albescens may accumulate more toxic forms of Se in its leaves than S. pinnata. The species also showed different leaf Se sequestration patterns: while S. albescens showed a diffuse pattern, S. pinnata sequestered Se in localized epidermal cell clusters along leaf margins and tips, concentrated inside of epidermal cells. Transcript analyses of S. pinnata showed a constitutively higher expression of genes involved in sulfur assimilation, antioxidant activities, defense, and response to (methyl)jasmonic acid, salicylic acid, or ethylene. The levels of some of these hormones were constitutively elevated in S. pinnata compared with S. albescens, and leaf Se accumulation was slightly enhanced in both species when these hormones were supplied. Thus, defense-related phytohormones may play an important signaling role in the Se hyperaccumulation of S. pinnata, perhaps by constitutively up-regulating sulfur/Se assimilation followed by methylation of selenocysteine and the targeted sequestration of methylselenocysteine.
通过比较硒超积累植物匐枝山黧豆(十字花科)与相关的次生硒积累植物山黧豆,我们采用生理、结构、基因组和生化方法的组合,研究了硒(Se)耐受和超积累的分子机制。匐枝山黧豆积累了 3.6 倍的 Se,对 20 微米硒酸盐耐受,而山黧豆的生长受到抑制、出现黄化和坏死、光合作用受损以及活性氧水平升高。匐枝山黧豆中的抗坏血酸、谷胱甘肽、总硫和非蛋白巯基水平较高,表明 Se 耐受可能部分归因于抗氧化剂的增加和上调的硫同化。匐枝山黧豆中的硒代半胱氨酸甲基转移酶蛋白水平较高,从液相色谱-质谱法判断,主要积累游离氨基酸甲基硒代半胱氨酸,而山黧豆主要积累游离氨基酸硒代胱氨酸。山黧豆叶片的 X 射线吸收近边结构扫描主要检测到一种碳-Se-碳化合物(可能是硒代胱氨酸),此外还有一些硒代半胱氨酸和硒酸盐。因此,与匐枝山黧豆相比,山黧豆可能在其叶片中积累更多有毒形式的 Se。该物种还表现出不同的叶片 Se 隔离模式:山黧豆表现出弥散模式,而匐枝山黧豆则将 Se 隔离在叶边缘和叶尖的局部表皮细胞簇中,集中在表皮细胞内。匐枝山黧豆的转录分析显示,参与硫同化、抗氧化活性、防御以及对(甲基)茉莉酸、水杨酸或乙烯的反应的基因表达水平较高。与山黧豆相比,这些激素在匐枝山黧豆中的表达水平持续升高,并且当这些激素供应时,两种物种的叶片 Se 积累略有增强。因此,与防御相关的植物激素可能在匐枝山黧豆的 Se 超积累中发挥重要的信号作用,可能通过持续上调硫/Se 同化,然后对硒代半胱氨酸进行甲基化,并将甲基硒代半胱氨酸有针对性地隔离。