Suppr超能文献

蛙骨骼肌细胞内氯离子和pH值的连续直接测量

Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.

作者信息

Bolton T B, Vaughan-Jones R D

出版信息

J Physiol. 1977 Sep;270(3):801-33. doi: 10.1113/jphysiol.1977.sp011983.

Abstract
  1. Ion-sensitive electrodes (made with a chloride-sensitive ion-exchange resin) were used to measure the internal chloride activity (a(i) (Cl)) of frog sartorius fibres at 25 degrees C.2. The internal pH (pH(i)) of other sartorius fibres was measured with a recessed tip pH-sensitive electrode (made with pH-sensitive glass).3. In normal bicarbonate-free solution (containing 2.5 mM potassium), the average chloride equilibrium potential, E(Cl) (calculated from a(i) (Cl) and the measured chloride activity of the external solution (a(o) (Cl)) was 87.7 +/- 1.7 mV (mean +/- S.E.; n = 16) in fibres where the average membrane potential, E(m), was 88.3 +/- 1.5 mV (mean +/- S.E.; n = 16). In experiments where a(i) (Cl) was varied between about 1 and 10 mM (which corresponds to values of E(m) between about -105 and -50 mV) E(Cl) was within 1-3 mV of E(m) at equilibrium. These measurements of a(i) (Cl) were obtained from the potential difference between the chloride-sensitive electrode and an intracellular indifferent micro-electrode filled with potassium chloride. If a potassium sulphate-filled indifferent micro-electrode was used, then values of a(i) (Cl) below about 5 mM were erroneously high, probably due to interference from other sarcoplasmic ions at the indifferent electrode.4. In solutions containing 15 mM bicarbonate and gassed with 5% CO(2), pH(i) was 6.9, corresponding to an internal bicarbonate concentration of 7.6 mM. E(Cl) measured in this solution was some 4 mV positive to E(m). Most of the difference between E(Cl) and E(m) could be ascribed to interference by sarcoplasmic bicarbonate on the basis of selectivity measurements of chloride against bicarbonate made on the ion-exchange resin in the relevant range of a(Cl).5. If bicarbonate/CO(2) in the external solution was replaced by HEPES/pure O(2) at constant pH, then pH(i) rose from 6.88 +/- 0.02 (mean +/- S.E.) to 7.05 +/- 0.02. A change in external pH of 1 unit caused pH(i) to change by about 0.02 unit and the intracellular buffering power was calculated to be about 35.6. In solution made hypertonic by the addition of sucrose, E(m) changed little or depolarized and E(Cl) and E(m) remained close. In contrast, in solution made hypertonic by the addition of solid sodium chloride (high-chloride solution) E(Cl) became negative to E(m). Conversely in low chloride solution E(Cl) became positive to E(m).7. When the chloride permeability (P(Cl)) was reduced by the use of acid solution, E(Cl) moved positive to E(m) indicating an accumulation of internal chloride. When P(Cl) was increased again by returning to more alkaline solution, E(m) depolarized to E(Cl).8. The results are consistent with the existence of a small, active movement of chloride, the effects of which are normally obscured by large passive movements of chloride when P(Cl) is large.
摘要
  1. 使用离子敏感电极(由氯化物敏感离子交换树脂制成)在25℃下测量青蛙缝匠肌纤维的内部氯化物活性(a(i)(Cl))。

  2. 用凹形尖端pH敏感电极(由pH敏感玻璃制成)测量其他缝匠肌纤维的内部pH(pH(i))。

  3. 在正常的无碳酸氢盐溶液(含2.5 mM钾)中,在平均膜电位E(m)为88.3±1.5 mV(平均值±标准误;n = 16)的纤维中,平均氯化物平衡电位E(Cl)(根据a(i)(Cl)和外部溶液的测量氯化物活性a(o)(Cl)计算)为87.7±1.7 mV(平均值±标准误;n = 16)。在a(i)(Cl)在约1至10 mM之间变化的实验中(这对应于E(m)在约-105至-50 mV之间的值),平衡时E(Cl)在E(m)的1 - 3 mV范围内。这些a(i)(Cl)的测量值是从氯化物敏感电极与充满氯化钾的细胞内无关微电极之间的电位差获得的。如果使用充满硫酸钾的无关微电极,那么低于约5 mM的a(i)(Cl)值会错误地偏高,这可能是由于无关电极处其他肌浆离子的干扰。

  4. 在含有15 mM碳酸氢盐并通入5% CO₂的溶液中,pH(i)为6.9,对应内部碳酸氢盐浓度为7.6 mM。在此溶液中测量的E(Cl)比E(m)正约4 mV。根据在相关a(Cl)范围内对离子交换树脂上氯化物与碳酸氢盐的选择性测量,E(Cl)和E(m)之间的大部分差异可归因于肌浆碳酸氢盐的干扰。

  5. 如果在恒定pH下将外部溶液中的碳酸氢盐/CO₂替换为HEPES/纯O₂,那么pH(i)从6.88±0.02(平均值±标准误)升至7.05±0.02。外部pH变化1个单位会使pH(i)变化约0.02个单位,计算得出细胞内缓冲能力约为35.6。在通过添加蔗糖制成高渗的溶液中,E(m)变化很小或去极化,E(Cl)和E(m)保持接近。相反,在通过添加固体氯化钠制成高渗的溶液(高氯化物溶液)中,E(Cl)相对于E(m)变为负。相反,在低氯化物溶液中E(Cl)相对于E(m)变为正。

  6. 当通过使用酸性溶液降低氯化物通透性(P(Cl))时,E(Cl)向E(m)正向移动,表明内部氯化物积累。当通过回到更碱性溶液再次增加P(Cl)时,E(m)去极化至E(Cl)。

  7. 结果与存在少量氯化物主动转运一致,当P(Cl)较大时,其影响通常被氯化物的大量被动转运所掩盖。

相似文献

引用本文的文献

10
Chloride efflux in single barnacle muscle fibres.藤壶单根肌纤维中的氯离子外流
J Physiol. 1980 Apr;301:317-36. doi: 10.1113/jphysiol.1980.sp013208.

本文引用的文献

2
Chloride distribution in Aplysia neurones.海兔神经元中的氯离子分布。
J Physiol. 1976 Apr;256(2):441-64. doi: 10.1113/jphysiol.1976.sp011332.
3
Potassium accumulation in muscle and associated changes.肌肉中的钾蓄积及相关变化。
J Physiol. 1941 Aug 11;100(1):1-63. doi: 10.1113/jphysiol.1941.sp003922.
5
CHLORIDE IN THE SQUID GIANT AXON.枪乌贼巨大轴突中的氯离子
J Physiol. 1963 Dec;169(3):690-705. doi: 10.1113/jphysiol.1963.sp007289.
6
Distribution and movement of muscle chloride.肌肉中氯离子的分布与移动
J Physiol. 1963 Apr;166(1):87-109. doi: 10.1113/jphysiol.1963.sp007092.
9
The chloride content of rat auricle.大鼠耳廓的氯化物含量。
J Physiol. 1961 Aug;157(3):415-25. doi: 10.1113/jphysiol.1961.sp006733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验