Suppr超能文献

哺乳动物心肌中氯离子的非被动分布:细胞内氯离子活性的微电极测量

Non-passive chloride distribution in mammalian heart muscle: micro-electrode measurement of the intracellular chloride activity.

作者信息

Vaughan-Jones R D

出版信息

J Physiol. 1979 Oct;295:83-109. doi: 10.1113/jphysiol.1979.sp012956.

Abstract
  1. Liquid ion-exchanger Cl- -sensitive micro-electrodes were used to make continuous measurements of the intracellular Cl activity, aCli, of quiscent sheep cardiac Purkinje fibres in vitro. 2. aCli was higher than that expected from a passive distribution, (which would have been about 5 mM). It was 3--4 times hiable; EC1 was about 35 mV positive to Em. It was over twice as high in the nominal absence of bicarbonate/CO2 (when the buffer-system was HEPES/O2) but was not always so stable, and ECl was about 20 mV positive to Em. 3. Experiments designed to assess the maximum possible error likely to occur in the measurement of aCli showed that this could not be large and that the estimates of ECl were accurate to within 8 mV. 4. The ability of Cl to move down both concentration and potential gradients was established by demonstrating a loss of aCli in Cl-free solutions and a gain when Em was depolarized positive to ECl in high-K solutions. In both cases, the changes were complete within about 100--160 min. 5. The decline of aCli in Cl-free solutions (glucuronate-substituted) was not significantly affected by changes of [Ca]o from 0 to 12 mM or by the depolarizations of Em of up to 60 mV that sometimes occurred in low or zero [Ca]o. 6. Only 2--3 mM-aClo was sufficient to impede substantially the ready loss of aCli in HEPES-buffered solutions. 7. In high-K solutions (45 mM), Cl appeared to be passively distributed since, at equilibrium, Em and ECl differed by less than 2 mV. 8. In HEPES-buffered Tyrode, ECl of quiescent papillary muscle of the guinea-pig was, on average, 39 mV positive to Em. 9. It is concluded that liquid ion-exchanger Cl- -sensitive micro-electrodes are suitable for studying the Cl regulation of sheep Prukinje fibres, and probably of other cardiac tissues. The measurements of resting aCli are quite accurate when using either HEPES or bicarbonate-buffered Tyrode. The results are discussed in relation to estimates of the apparent membrane Cl permeability under various conditions and the possible existence of an inwardly directed 'Cl pump'.
摘要
  1. 使用液体离子交换剂Cl⁻敏感微电极对体外静息绵羊心脏浦肯野纤维的细胞内Cl活性(aCli)进行连续测量。2. aCli高于被动分布预期的值(被动分布时约为5 mM)。其变化幅度为3至4倍;ECl相对于Em约为正35 mV。在名义上不存在碳酸氢盐/CO₂(缓冲系统为HEPES/O₂)时,aCli高出两倍多,但稳定性欠佳,且ECl相对于Em约为正20 mV。3. 旨在评估测量aCli时可能出现的最大误差的实验表明,该误差不大,且ECl的估计值精确到8 mV以内。4. 通过在无Cl溶液中aCli降低以及在高K溶液中Em去极化至高于ECl时aCli增加,证实了Cl能够顺浓度和电位梯度移动。在这两种情况下,变化在约100 - 160分钟内完成。5. 在无Cl溶液(葡萄糖醛酸盐替代)中,aCli的下降不受细胞外[Ca]从0至12 mM的变化影响,也不受有时在低或零[Ca]时发生的高达60 mV的Em去极化影响。6. 仅2 - 3 mM的细胞外Cl足以显著阻碍在HEPES缓冲溶液中aCli的快速下降。7. 在高K溶液(45 mM)中,Cl似乎是被动分布的,因为在平衡时,Em和ECl的差值小于2 mV。8. 在HEPES缓冲的台氏液中,豚鼠静息乳头肌的ECl相对于Em平均为正39 mV。9. 得出结论,液体离子交换剂Cl⁻敏感微电极适用于研究绵羊浦肯野纤维以及可能其他心脏组织的Cl调节。使用HEPES或碳酸氢盐缓冲的台氏液时,静息aCli的测量相当准确。结合各种条件下表观膜Cl通透性的估计以及可能存在的内向“Cl泵”对结果进行了讨论。

相似文献

3
Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle.
J Physiol. 1989 Apr;411:437-55. doi: 10.1113/jphysiol.1989.sp017582.
4
Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
J Physiol. 1977 Sep;270(3):801-33. doi: 10.1113/jphysiol.1977.sp011983.
7
Intracellular chloride activity in quiescent cat papillary muscle.
Am J Physiol. 1980 Apr;238(4):H487-93. doi: 10.1152/ajpheart.1980.238.4.H487.
8
Membrane permeability during low potassium depolarization in sheep cardiac Purkinje fibers.
Am J Physiol. 1979 Sep;237(3):C156-65. doi: 10.1152/ajpcell.1979.237.3.C156.
9
Na(+)-HCO3- symport in the sheep cardiac Purkinje fibre.
J Physiol. 1992;451:365-85. doi: 10.1113/jphysiol.1992.sp019169.
10
Measurement of intracellular chloride activity in mouse liver slices with microelectrodes.
Biochim Biophys Acta. 1987 Sep 18;903(1):56-67. doi: 10.1016/0005-2736(87)90155-6.

引用本文的文献

1
A highly-selective chloride microelectrode based on a mercuracarborand anion carrier.
Sci Rep. 2019 Dec 11;9(1):18860. doi: 10.1038/s41598-019-54885-6.
2
The effect of respiration buffer composition on mitochondrial metabolism and function.
PLoS One. 2017 Nov 1;12(11):e0187523. doi: 10.1371/journal.pone.0187523. eCollection 2017.
4
Anion channelrhodopsins for inhibitory cardiac optogenetics.
Sci Rep. 2016 Sep 15;6:33530. doi: 10.1038/srep33530.
6
Anion transport and GABA signaling.
Front Cell Neurosci. 2013 Oct 24;7:177. doi: 10.3389/fncel.2013.00177.
7
Phenomics of cardiac chloride channels.
Compr Physiol. 2013 Apr;3(2):667-92. doi: 10.1002/cphy.c110014.
8
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis.
PLoS One. 2013;8(4):e60323. doi: 10.1371/journal.pone.0060323. Epub 2013 Apr 5.
9
K+-Cl- cotransporter-2 KCC2 in chicken cardiomyocytes.
Am J Physiol Cell Physiol. 2012 Dec 1;303(11):C1180-91. doi: 10.1152/ajpcell.00274.2012. Epub 2012 Oct 3.
10
Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity.
Front Mol Neurosci. 2009 Dec 4;2:15. doi: 10.3389/neuro.02.015.2009. eCollection 2009.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.
2
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
3
Chloride distribution in Aplysia neurones.
J Physiol. 1976 Apr;256(2):441-64. doi: 10.1113/jphysiol.1976.sp011332.
4
The influence of potassium and chloride ions on the membrane potential of single muscle fibres.
J Physiol. 1959 Oct;148(1):127-60. doi: 10.1113/jphysiol.1959.sp006278.
5
CHLORIDE IN THE SQUID GIANT AXON.
J Physiol. 1963 Dec;169(3):690-705. doi: 10.1113/jphysiol.1963.sp007289.
6
Potassium ions and electrical activity of specialized cardiac fibers.
Am J Physiol. 1960 Dec;199:1125-30. doi: 10.1152/ajplegacy.1960.199.6.1125.
7
The chloride content of rat auricle.
J Physiol. 1961 Aug;157(3):415-25. doi: 10.1113/jphysiol.1961.sp006733.
8
Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle.
J Gen Physiol. 1960 Nov;44(2):327-44. doi: 10.1085/jgp.44.2.327.
9
Anion conductance of cardiac muscle.
J Physiol. 1961 Jul;157(2):335-50. doi: 10.1113/jphysiol.1961.sp006726.
10
Chloride ions and the membrane potential of Purkinje fibres.
J Physiol. 1961 Apr;156(2):375-88. doi: 10.1113/jphysiol.1961.sp006682.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验