Physik Department, Technische Universität München, Garching, Germany.
Biophys J. 2011 Jun 8;100(11):2745-53. doi: 10.1016/j.bpj.2011.04.038.
Secondary structure formation of nucleic acids strongly depends on salt concentration and temperature. We develop a theory for RNA folding that correctly accounts for sequence effects, the entropic contributions associated with loop formation, and salt effects. Using an iterative expression for the partition function that neglects pseudoknots, we calculate folding free energies and minimum free energy configurations based on the experimentally derived basepairing free energies. The configurational entropy of loop formation is modeled by the asymptotic expression -clnm, where m is the length of the loop and c the loop exponent, which is an adjustable constant. Salt effects enter in two ways: first, we derive salt-induced modifications of the free energy parameters for describing basepairing, and second, we include the electrostatic free energy for loop formation. Both effects are modeled on the Debye-Hückel level including counterion condensation. We validate our theory for two different RNA sequences. For tRNA-phe, the resultant heat capacity curves for thermal denaturation at various salt concentrations accurately reproduce experimental results. For the P5ab RNA hairpin, we derive the global phase diagram in the three-dimensional space spanned by temperature, stretching force, and salt concentration and obtain good agreement with the experimentally determined critical unfolding force. We show that for a proper description of RNA melting and stretching, both salt and loop entropy effects are needed.
核酸的二级结构形成强烈依赖于盐浓度和温度。我们开发了一种 RNA 折叠理论,该理论正确考虑了序列效应、与环形成相关的熵贡献以及盐效应。我们使用一种迭代的配分函数表达式,忽略了假结,基于实验得出的碱基配对自由能来计算折叠自由能和最小自由能构象。环形成的构象熵通过渐近表达式 -clnm 来建模,其中 m 是环的长度,c 是环指数,这是一个可调常数。盐效应有两种作用方式:首先,我们推导出描述碱基配对的自由能参数的盐诱导修正,其次,我们包括环形成的静电自由能。这两种效应都在包括抗衡离子凝聚的 Debye-Hückel 水平上进行建模。我们对两个不同的 RNA 序列进行了验证。对于 tRNA-phe,在各种盐浓度下热变性的热容量曲线准确地再现了实验结果。对于 P5ab RNA 发夹,我们在温度、拉伸力和盐浓度构成的三维空间中推导出全局相图,并获得与实验确定的临界展开力的良好一致性。我们表明,对于 RNA 熔化和拉伸的适当描述,需要考虑盐和环熵效应。