Department of Chemical and Biomolecular Engineering, Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94720, USA.
Biotechnol Bioeng. 2011 Nov;108(11):2561-70. doi: 10.1002/bit.23249. Epub 2011 Jul 25.
A model-based framework is described that permits the optimal composition of cellulase enzyme mixtures to be found for lignocellulose hydrolysis. The rates of hydrolysis are shown to be dependent on the nature of the substrate. For bacterial microcrystalline cellulose (BMCC) hydrolyzed by a ternary cellulase mixture of EG2, CBHI, and CBHII, the optimal predicted mixture was 1:0:1 EG2:CBHI:CBHII at 24 h and 1:1:0 at 72 h, at loadings of 10 mg enzyme per g substrate. The model was validated with measurements of soluble cello-oligosaccharide production from BMCC during both single enzyme and mixed enzyme hydrolysis. Three-dimensional diagrams illustrating cellulose conversion were developed for mixtures of EG2, CBHI, CBHII acting on BMCC and predicted for other substrates with a range of substrate properties. Model predictions agreed well with experimental values of conversion after 24 h for a variety of enzyme mixtures. The predicted mixture performances for substrates with varying properties demonstrated the effects of initial degree of polymerization (DP) and surface area on the performance of cellulase mixtures. For substrates with a higher initial DP, endoglucanase enzymes accounted for a larger fraction of the optimal mixture. Substrates with low surface areas showed significantly reduced hydrolysis rates regardless of mixture composition. These insights, along with the quantitative predictions, demonstrate the utility of this model-based framework for optimizing cellulase mixtures.
描述了一种基于模型的框架,该框架允许找到木质纤维素水解用纤维素酶混合物的最佳组成。水解速率取决于底物的性质。对于由 EG2、CBHI 和 CBHII 组成的三元纤维素酶混合物水解的细菌微晶纤维素 (BMCC),在 24 h 时预测的最佳混合物为 1:0:1 EG2:CBHI:CBHII,在 72 h 时为 1:1:0,在 10 mg 酶/克底物的负载下。该模型通过测量 BMCC 在单一酶和混合酶水解过程中可溶性纤维二糖寡糖的产生进行了验证。为 EG2、CBHI、CBHII 混合物作用于 BMCC 以及其他具有一系列底物性质的底物的纤维素转化率开发了三维图。对于具有不同性质的底物,模型预测与各种酶混合物 24 h 后的转化率实验值吻合良好。对于具有不同性质的底物,预测的混合物性能表明了初始聚合度 (DP) 和表面积对纤维素酶混合物性能的影响。对于初始 DP 较高的底物,内切葡聚糖酶酶占最佳混合物的比例较大。无论混合物组成如何,表面积低的底物的水解速率都明显降低。这些见解以及定量预测表明,该基于模型的框架在优化纤维素酶混合物方面具有实用性。