Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
Neuron. 2010 May 27;66(4):550-9. doi: 10.1016/j.neuron.2010.04.024.
Long-term potentiation (LTP) of mossy fiber EPSCs in the cerebellar nuclei is controlled by synaptic inhibition from Purkinje neurons. EPSCs are potentiated by a sequence of excitation, inhibition, and disinhibition, raising the question of how these stimuli interact to induce plasticity. Here, we find that synaptic excitation, inhibition, and disinhibition couple to different calcium-dependent signaling pathways. In LTP induction protocols, constitutively active calcineurin can replace synaptic excitation, and constitutively active alpha-CaMKII can replace calcium influx associated with resumption of spiking upon disinhibition. Additionally, nimodipine can replace hyperpolarization, indicating that inhibition of firing decreases Ca influx through L-type Ca channels, providing a necessary signal for LTP. Together, these data suggest that potentiation develops after a calcineurin priming signal combines with an alpha-CaMKII triggering signal if and only if L-type Ca current is reduced. Thus, hyperpolarization induced by synaptic inhibition actively controls excitatory synaptic plasticity in the cerebellar nuclei.
长时程增强(LTP)在小脑核的苔藓纤维 EPSC 受到来自浦肯野神经元的突触抑制控制。EPSC 被一系列的兴奋、抑制和去抑制增强,提出了这些刺激如何相互作用以诱导可塑性的问题。在这里,我们发现突触兴奋、抑制和去抑制与不同的钙依赖性信号通路偶联。在 LTP 诱导方案中,组成型激活的钙调神经磷酸酶可以替代突触兴奋,而组成型激活的α-CaMKII 可以替代与去抑制后恢复放电相关的钙内流。此外,尼莫地平可以替代超极化,表明抑制放电会减少通过 L 型钙通道的钙内流,为 LTP 提供必要的信号。总之,这些数据表明,如果并且只有 L 型钙电流减少,钙调神经磷酸酶的启动信号与α-CaMKII 的触发信号相结合后,才会产生增强作用。因此,突触抑制诱导的超极化主动控制小脑核中的兴奋性突触可塑性。