Suppr超能文献

包裹铕(III)配合物的发光二氧化硅核/银壳

Luminescent Silica Core / Silver Shell Encapsulated with Eu(III) Complex.

作者信息

Zhang Jian, Fu Yi, Lakowicz Joseph R

机构信息

Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201.

出版信息

J Phys Chem C Nanomater Interfaces. 2009 Nov 12;113(45):19404-19410. doi: 10.1021/jp906742q.

Abstract

In this paper we studied the metal-enhanced emission from long-lifetime lanthanide dyes that were encapsulated in the silver nanoshells. The metal nanoshells were synthesized with the silica spherical cores of 50 nm diameters and the silver shells of 5 - 60 nm. The optical properties of luminescent metal shells were performed on the either ensemble fluorescence spectroscopy or single particle imaging. The emission intensity from the encapsulated lanthanides was observed to enhance significantly by the metal nanoshell. The enhancement efficiency initially increased with the metal shell thickness and then decreased. The maximal enhancement occurred at the 20 - 30 nm thickness. The lifetime of encapsulated Eu(III) complexes was shorten dramatically indicating that they were coupled efficiently with the metal shells. The increased brightness and reduced lifetime of this core-shell structure demonstrate that the lanthanides are favorable for the single target molecule detections after encapsulating into the metal nanoshells.

摘要

在本文中,我们研究了封装在银纳米壳中的长寿命镧系染料的金属增强发射。金属纳米壳是用直径为50 nm的二氧化硅球形核和5 - 60 nm的银壳合成的。发光金属壳的光学性质通过整体荧光光谱或单颗粒成像来进行研究。观察到封装的镧系元素的发射强度被金属纳米壳显著增强。增强效率最初随着金属壳厚度的增加而增加,然后降低。最大增强发生在20 - 30 nm的厚度处。封装的Eu(III)配合物的寿命显著缩短,表明它们与金属壳有效耦合。这种核壳结构亮度的增加和寿命的缩短表明,镧系元素在封装到金属纳米壳中后有利于单目标分子的检测。

相似文献

1
Luminescent Silica Core / Silver Shell Encapsulated with Eu(III) Complex.
J Phys Chem C Nanomater Interfaces. 2009 Nov 12;113(45):19404-19410. doi: 10.1021/jp906742q.
2
Dye-labeled silver nanoshell-bright particle.
J Phys Chem B. 2006 May 11;110(18):8986-91. doi: 10.1021/jp057032z.
3
Emission Behavior of Fluorescently Labeled Silver Nanoshell: Enhanced Self-Quenching by Metal Nanostructure.
J Phys Chem C Nanomater Interfaces. 2007 Feb 8;111(5):1955-1961. doi: 10.1021/jp063996u.
4
Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores.
J Phys Chem C Nanomater Interfaces. 2012 Nov 15;116(45):24224-24232. doi: 10.1021/jp3057527. Epub 2012 Oct 25.
5
Fluorescent metal nanoshell and CK19 detection on single cell image.
Biochem Biophys Res Commun. 2011 Sep 16;413(1):53-7. doi: 10.1016/j.bbrc.2011.08.042. Epub 2011 Aug 17.
6
Silica-metal core-shell nanostructures.
Adv Colloid Interface Sci. 2012 Jan 15;170(1-2):28-47. doi: 10.1016/j.cis.2011.11.002. Epub 2011 Nov 13.
7
Target molecule imaging on tissue specimens by fluorescent metal nanoprobes.
J Biomed Opt. 2011 Nov;16(11):116004. doi: 10.1117/1.3644394.
8
Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell.
Anal Chem. 2010 Jun 1;82(11):4464-71. doi: 10.1021/ac100241f.
9
Fluorescent Metal Nanoshells: Lifetime-Tunable Molecular Probes in Fluorescent Cell Imaging.
J Phys Chem C Nanomater Interfaces. 2011 Mar 25;115(15):7255-7260. doi: 10.1021/jp111475y.
10
Metal Nanoshell - Capsule for Light-Driven Release of Small Molecule.
J Phys Chem C Nanomater Interfaces. 2010 Apr 2;114(17):7635-7659. doi: 10.1021/jp911537w.

引用本文的文献

2
Synthesis of gold nanorod/neodymium oxide yolk/shell composite with plasmon-enhanced near-infrared luminescence.
RSC Adv. 2018 Jun 4;8(36):20056-20060. doi: 10.1039/c8ra01342j. eCollection 2018 May 30.
3
Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect.
Nanomaterials (Basel). 2021 Apr 19;11(4):1037. doi: 10.3390/nano11041037.
5
Surface-plasmon induced polarized emission from Eu(III)--a class of luminescent lanthanide ions.
Chem Commun (Camb). 2014 Aug 18;50(64):9010-3. doi: 10.1039/c4cc03633f.
6
Luminescent Properties of Eu(III) Chelates on Metal Nanorods.
J Phys Chem C Nanomater Interfaces. 2013 May 9;117(18). doi: 10.1021/jp3091667.
7
Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.
Nanoscale Res Lett. 2013 Nov 8;8(1):468. doi: 10.1186/1556-276X-8-468.
8
Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores.
J Phys Chem C Nanomater Interfaces. 2012 Nov 15;116(45):24224-24232. doi: 10.1021/jp3057527. Epub 2012 Oct 25.
9
Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells.
Chem Commun (Camb). 2012 Oct 9;48(78):9726-8. doi: 10.1039/c2cc34025a.
10
Target molecule imaging on tissue specimens by fluorescent metal nanoprobes.
J Biomed Opt. 2011 Nov;16(11):116004. doi: 10.1117/1.3644394.

本文引用的文献

1
Emission Behavior of Fluorescently Labeled Silver Nanoshell: Enhanced Self-Quenching by Metal Nanostructure.
J Phys Chem C Nanomater Interfaces. 2007 Feb 8;111(5):1955-1961. doi: 10.1021/jp063996u.
2
Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes.
Nano Lett. 2008 Oct;8(10):3481-7. doi: 10.1021/nl8024278. Epub 2008 Aug 26.
5
Europium(III) complexes containing organosilyldipyridine ligands grafted on silica nanoparticles.
Langmuir. 2008 Jun 17;24(12):6208-14. doi: 10.1021/la7035983. Epub 2008 May 20.
6
Metal-enhanced e-type fluorescence.
Appl Phys Lett. 2008;92(1):13905. doi: 10.1063/1.2829798.
8
Very high density sensing arrays.
Chem Rev. 2008 Feb;108(2):614-37. doi: 10.1021/cr0681142. Epub 2008 Jan 30.
9
Lanthanide-containing polymer nanoparticles for biological tagging applications: nonspecific endocytosis and cell adhesion.
J Am Chem Soc. 2007 Nov 7;129(44):13653-60. doi: 10.1021/ja073970w. Epub 2007 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验