School of Biological Sciences, Royal Holloway-University of London, Egham, UK.
BMC Genomics. 2010 Jun 1;11:345. doi: 10.1186/1471-2164-11-345.
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology.
Using RNA interference (RNAi) to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1), or cardiomyopathy (Obscurin, Tcap). In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro.
Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage. Therefore, it becomes apparent that any gene therapy approaches for DMD should target early stages in muscle development to attain a maximum clinical benefit. With a clear and specific definition of the transcriptome of dystrophin deficiency, manipulation of identified dysregulated molecules downstream of dystrophin may lead to novel ameliorative approaches for DMD.
杜氏肌营养不良症(DMD)是一种致命的肌肉消耗疾病,由肌营养不良蛋白基因突变引起。DMD 的分子病理生理学复杂且尚未完全确定,这阻碍了有效改善方法的发展。迄今为止,对萎缩细胞和组织进行的转录组研究由于异质比较和继发病理而受到非特异性变化和背景噪声的影响。使用完美匹配的对照细胞群体作为转录组研究的参考的研究设计将更具体地了解肌营养不良蛋白缺乏和 DMD 病理生理学的影响。
使用 RNA 干扰(RNAi)敲低 C57BL10 小鼠肌管中的肌营养不良蛋白,我们创建了一个同质模型来研究肌营养不良蛋白缺乏的肌管的转录组。我们注意到这些肌管与其匹配的对照培养物之间的整体基因表达模式存在显着差异。特别是,对失调基因的分类分析表明,与肌肉细胞收缩单位、离子通道、代谢途径和激酶成分相关的分子显着富集。此外,一些失调基因可能潜在地解释与肌营养不良蛋白缺乏相关的情况和表型,例如钙稳态失调(Pvalb 和 Casq1)或心肌病(Obscurin,Tcap)。除了通过 qPCR 验证外,我们的数据还通过在体内和体外以前在基因和/或蛋白质水平上进行的几个独立研究的肯定再现获得了另一个层次的有效性。
我们的结果表明,在横纹肌中,肌营养不良蛋白参与协调肌纤维作为收缩单位的正常发育和组织,描绘了 DMD 的一种新病理生理学,其中肌营养不良蛋白的缺失导致发育不良的肌纤维容易受到物理压力和损伤。因此,显然任何针对 DMD 的基因治疗方法都应该针对肌肉发育的早期阶段,以获得最大的临床益处。通过明确和具体地定义肌营养不良蛋白缺乏的转录组,对肌营养不良蛋白下游的鉴定出的失调分子进行操作可能会为 DMD 带来新的改善方法。