Fiala Dusan, Psikuta Agnes, Jendritzky Gerd, Paulke Stefan, Nelson David A, Lichtenbelt Wouter D van Marken, Frijns Arjan J H
ErgonSim, Comfort Energy Efficiency, Holderbuschweg 47, D-7056 Stuttgart, Germany.
Front Biosci (Schol Ed). 2010 Jun 1;2(3):939-68. doi: 10.2741/s112.
Various and disparate technical disciplines have identified a growing need for tools to predict human thermal and thermoregulatory responses to environmental heating and cooling and other thermal challenges such as anesthesia and non-ionizing radiation. In this contribution, a dynamic simulation model is presented and used to predict human thermophysiological and perceptual responses for different applications and situations. The multi-segmental, multi-layered mathematical model predicts body temperatures, thermoregulatory responses, and components of the environmental heat exchange in cold, moderate, as well as hot stress conditions. The incorporated comfort model uses physiological states of the human body to predict thermal sensation responses to steady state and transient conditions. Different validation studies involving climate-chamber physiological and thermal comfort experiments, exposures to uncontrolled outdoor weather conditions, extreme climatic and radiation asymmetry scenarios revealed the model to predict physiological and perceptual responses typically within the standard deviation of the experimental observations. Applications of the model in biometeorology, clothing research, the car industry, clinical and safety applications are presented and discussed.
不同的技术学科都发现,对于预测人体对环境加热、冷却以及其他热挑战(如麻醉和非电离辐射)的热和体温调节反应的工具需求日益增长。在本论文中,提出了一个动态模拟模型,并用于预测不同应用和场景下的人体热生理和感知反应。该多节段、多层数学模型可预测寒冷、适度以及热应激条件下的体温、体温调节反应和环境热交换组成部分。纳入的舒适度模型利用人体的生理状态来预测对稳态和瞬态条件的热感觉反应。涉及气候室生理和热舒适度实验、暴露于不受控制的室外天气条件、极端气候和辐射不对称场景的不同验证研究表明,该模型预测的生理和感知反应通常在实验观测值的标准差范围内。本文介绍并讨论了该模型在生物气象学、服装研究、汽车工业、临床和安全应用中的应用。