Suppr超能文献

利用环境相关性来鉴定导致局部适应的基因座。

Using environmental correlations to identify loci underlying local adaptation.

机构信息

Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Calfornia 95616, USA.

出版信息

Genetics. 2010 Aug;185(4):1411-23. doi: 10.1534/genetics.110.114819. Epub 2010 Jun 1.

Abstract

Loci involved in local adaptation can potentially be identified by an unusual correlation between allele frequencies and important ecological variables or by extreme allele frequency differences between geographic regions. However, such comparisons are complicated by differences in sample sizes and the neutral correlation of allele frequencies across populations due to shared history and gene flow. To overcome these difficulties, we have developed a Bayesian method that estimates the empirical pattern of covariance in allele frequencies between populations from a set of markers and then uses this as a null model for a test at individual SNPs. In our model the sample frequencies of an allele across populations are drawn from a set of underlying population frequencies; a transform of these population frequencies is assumed to follow a multivariate normal distribution. We first estimate the covariance matrix of this multivariate normal across loci using a Monte Carlo Markov chain. At each SNP, we then provide a measure of the support, a Bayes factor, for a model where an environmental variable has a linear effect on the transformed allele frequencies compared to a model given by the covariance matrix alone. This test is shown through power simulations to outperform existing correlation tests. We also demonstrate that our method can be used to identify SNPs with unusually large allele frequency differentiation and offers a powerful alternative to tests based on pairwise or global F(ST). Software is available at http://www.eve.ucdavis.edu/gmcoop/.

摘要

涉及局部适应的基因座可以通过等位基因频率与重要生态变量之间的异常相关性或地理区域之间的极端等位基因频率差异来识别。然而,由于共同的历史和基因流,这些比较受到样本量和等位基因频率在种群之间的中性相关性的差异的影响。为了克服这些困难,我们开发了一种贝叶斯方法,该方法可以从一组标记物中估计种群之间等位基因频率协方差的经验模式,然后将其用作单个 SNP 测试的零模型。在我们的模型中,种群之间一个等位基因的样本频率是从一组潜在的种群频率中抽取的; 这些种群频率的变换被假定遵循多元正态分布。我们首先使用蒙特卡罗马尔可夫链估计跨基因座的这个多元正态的协方差矩阵。然后,在每个 SNP 处,我们提供了一个环境变量对变换的等位基因频率有线性影响的模型的支持度量,即贝叶斯因子,与仅由协方差矩阵给出的模型相比。通过功率模拟证明,该测试优于现有相关性测试。我们还表明,我们的方法可用于识别具有异常大的等位基因频率分化的 SNP,并且为基于成对或全局 F(ST)的测试提供了强大的替代方法。软件可在 http://www.eve.ucdavis.edu/gmcoop/ 获得。

相似文献

2
Robust identification of local adaptation from allele frequencies.从等位基因频率中稳健地识别局部适应。
Genetics. 2013 Sep;195(1):205-20. doi: 10.1534/genetics.113.152462. Epub 2013 Jul 2.
5
A population genetic signal of polygenic adaptation.多基因适应性的群体遗传信号。
PLoS Genet. 2014 Aug 7;10(8):e1004412. doi: 10.1371/journal.pgen.1004412. eCollection 2014 Aug.
9
Human local adaptation of the TRPM8 cold receptor along a latitudinal cline.人类冷感受器 TRPM8 沿着纬度梯度的局部适应。
PLoS Genet. 2018 May 3;14(5):e1007298. doi: 10.1371/journal.pgen.1007298. eCollection 2018 May.

引用本文的文献

5
Copy number variation contributes to parallel local adaptation in an invasive plant.拷贝数变异促进了一种入侵植物的平行局部适应性。
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2413587122. doi: 10.1073/pnas.2413587122. Epub 2025 Mar 3.

本文引用的文献

4
A genealogical interpretation of principal components analysis.主成分分析的谱系学解释
PLoS Genet. 2009 Oct;5(10):e1000686. doi: 10.1371/journal.pgen.1000686. Epub 2009 Oct 16.
5
Spatial patterns of variation due to natural selection in humans.人类自然选择导致的空间变异模式。
Nat Rev Genet. 2009 Nov;10(11):745-55. doi: 10.1038/nrg2632. Epub 2009 Oct 13.
6
Detecting loci under selection in a hierarchically structured population.在分层结构群体中检测受选择的基因座。
Heredity (Edinb). 2009 Oct;103(4):285-98. doi: 10.1038/hdy.2009.74. Epub 2009 Jul 22.
7
The role of geography in human adaptation.地理在人类适应中的作用。
PLoS Genet. 2009 Jun;5(6):e1000500. doi: 10.1371/journal.pgen.1000500. Epub 2009 Jun 5.
8
Drawing inferences about the coancestry coefficient.推断共同祖先系数。
Theor Popul Biol. 2009 Jun;75(4):312-9. doi: 10.1016/j.tpb.2009.03.005. Epub 2009 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验