Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California, 95616.
Evolution. 2013 Nov;67(11):3258-73. doi: 10.1111/evo.12193. Epub 2013 Jul 24.
Populations can be genetically isolated both by geographic distance and by differences in their ecology or environment that decrease the rate of successful migration. Empirical studies often seek to investigate the relationship between genetic differentiation and some ecological variable(s) while accounting for geographic distance, but common approaches to this problem (such as the partial Mantel test) have a number of drawbacks. In this article, we present a Bayesian method that enables users to quantify the relative contributions of geographic distance and ecological distance to genetic differentiation between sampled populations or individuals. We model the allele frequencies in a set of populations at a set of unlinked loci as spatially correlated Gaussian processes, in which the covariance structure is a decreasing function of both geographic and ecological distance. Parameters of the model are estimated using a Markov chain Monte Carlo algorithm. We call this method Bayesian Estimation of Differentiation in Alleles by Spatial Structure and Local Ecology (BEDASSLE), and have implemented it in a user-friendly format in the statistical platform R. We demonstrate its utility with a simulation study and empirical applications to human and teosinte data sets.
种群可以通过地理距离和生态或环境差异而产生遗传隔离,这些差异会降低成功迁移的速度。实证研究通常试图在考虑地理距离的同时,调查遗传分化与某些生态变量之间的关系,但解决这个问题的常用方法(如部分 Mantel 检验)存在许多缺点。在本文中,我们提出了一种贝叶斯方法,使用户能够量化地理距离和生态距离对采样种群或个体之间遗传分化的相对贡献。我们将一组种群在一组不连锁基因座上的等位基因频率建模为空间相关的高斯过程,其中协方差结构是地理和生态距离的递减函数。模型的参数使用马尔可夫链蒙特卡罗算法进行估计。我们将这种方法称为基于空间结构和局部生态的等位基因分化的贝叶斯估计(BEDASSLE),并在统计平台 R 中以用户友好的格式实现了它。我们通过模拟研究和对人类和类蜀黍数据集的实证应用来证明其有效性。