Suppr超能文献

从大量自来水、处理后的污水和海水中浓缩肠道病毒。

Concentration of enteroviruses from large volumes of tap water, treated sewage, and seawater.

作者信息

Gerba C P, Farrah S R, Goyal S M, Wallis C, Melnick J L

出版信息

Appl Environ Microbiol. 1978 Mar;35(3):540-8. doi: 10.1128/aem.35.3.540-548.1978.

Abstract

Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.

摘要

本文描述了从大量自来水、污水和海水中高效浓缩肠道病毒的方法。在氯化铝存在的情况下,酸性水(pH 3.5)中的病毒以高达每分钟37.8升(10加仑)的流速依次吸附到一个10英寸(约25.4厘米)的玻璃纤维深层滤芯和一个10英寸的褶状环氧玻璃纤维过滤器上。吸附的病毒用甘氨酸缓冲液(pH 10.5至11.5)从过滤器上洗脱下来,洗脱液通过铝絮凝结合水萃取进行再浓缩。通过该程序,大量自来水、海水和污水中的脊髓灰质炎病毒平均浓缩效率分别为52%、53%和50%。结果表明,该方法能够检测源自污水处理厂的与表面固体相关的病毒。在实验室批量研究和酸盐注入装置之间未发现病毒回收率的差异。这种统一的病毒浓缩方案相对于先前描述的系统具有许多优点。这些优点包括:高操作流速、低重量和小尺寸、对各种水质差异很大的水有效,以及过滤器具有高抗堵塞性。

相似文献

1
Concentration of enteroviruses from large volumes of tap water, treated sewage, and seawater.
Appl Environ Microbiol. 1978 Mar;35(3):540-8. doi: 10.1128/aem.35.3.540-548.1978.
2
Concentration of viruses from large volumes of tap water using pleated membrane filters.
Appl Environ Microbiol. 1976 Feb;31(2):221-6. doi: 10.1128/aem.31.2.221-226.1976.
3
Concentration of enteroviruses from large volumes of turbid estuary water.
Can J Microbiol. 1977 Jun;23(6):770-8. doi: 10.1139/m77-114.
4
Concentration of enteroviruses from estuarine water.
Appl Environ Microbiol. 1977 May;33(5):1192-6. doi: 10.1128/aem.33.5.1192-1196.1977.
5
Simultaneous concentration of four enteroviruses from tap, waste, and natural waters.
Appl Environ Microbiol. 1984 Jun;47(6):1311-5. doi: 10.1128/aem.47.6.1311-1315.1984.
6
Concentration of poliovirus from tap water onto membrane filters with aluminum chloride at ambient pH levels.
Appl Environ Microbiol. 1978 Mar;35(3):624-6. doi: 10.1128/aem.35.3.624-626.1978.
7
Evaluation of MK filters for recovery of enteroviruses from tap water.
Appl Environ Microbiol. 1994 Jun;60(6):1974-7. doi: 10.1128/aem.60.6.1974-1977.1994.
9
Modified membrane-filter procedure for concentration of enteroviruses from tap water.
Appl Environ Microbiol. 1985 Feb;49(2):453-5. doi: 10.1128/aem.49.2.453-455.1985.
10
Regeneration of pleated filters used to concentrate enteroviruses from large volumes of tap water.
Appl Environ Microbiol. 1977 Feb;33(2):308-11. doi: 10.1128/aem.33.2.308-311.1977.

引用本文的文献

1
Simple, rapid, and efficient purification of M13 phages: The Faj-elek method.
PLoS One. 2025 Jun 6;20(6):e0325621. doi: 10.1371/journal.pone.0325621. eCollection 2025.
2
Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States.
Sci Total Environ. 2018 Apr 1;619-620:1330-1339. doi: 10.1016/j.scitotenv.2017.10.267. Epub 2017 Nov 23.
4
Concentration and recovery of viruses from water: a comprehensive review.
Food Environ Virol. 2012 Jun;4(2):41-67. doi: 10.1007/s12560-012-9080-2. Epub 2012 May 31.
5
New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water.
Appl Environ Microbiol. 2009 Apr;75(8):2393-9. doi: 10.1128/AEM.00922-08. Epub 2009 Feb 13.
9
Detection of infectious enteroviruses by an integrated cell culture-PCR procedure.
Appl Environ Microbiol. 1996 Apr;62(4):1424-7. doi: 10.1128/aem.62.4.1424-1427.1996.
10
Simple method for the concentration of influenza virus from allantoic fluid on microporous filters.
Appl Environ Microbiol. 1980 Mar;39(3):500-4. doi: 10.1128/aem.39.3.500-504.1980.

本文引用的文献

1
Concentration of enteroviruses from large volumes of water.
Appl Microbiol. 1973 Oct;26(4):529-34. doi: 10.1128/am.26.4.529-534.1973.
2
Characteristics of the BGM line of cells from African green monkey kidney. Brief report.
Arch Gesamte Virusforsch. 1970;32(4):389-92. doi: 10.1007/BF01250067.
3
Epoxy-fiberglass adsorbent for concentrating viruses from large volumes of potable water.
Appl Microbiol. 1974 Sep;28(3):501-2. doi: 10.1128/am.28.3.501-502.1974.
4
Environmental factors influencing isolation of enteroviruses from polluted surface waters.
Appl Microbiol. 1974 May;27(5):920-6. doi: 10.1128/am.27.5.920-926.1974.
5
Recovery of poliovirus from turbid estuarine water on microporous filters by the use of celite.
Appl Microbiol. 1974 Mar;27(3):506-12. doi: 10.1128/am.27.3.506-512.1974.
7
Concentration of enteroviruses on membrane filters.
J Virol. 1967 Jun;1(3):472-7. doi: 10.1128/JVI.1.3.472-477.1967.
8
Concentration of viruses on aluminum and calcium salts.
Am J Epidemiol. 1967 May;85(3):459-68. doi: 10.1093/oxfordjournals.aje.a120708.
9
Wastewater renovation and reuse: virus removal by soil filtration.
Science. 1976 Jun 4;192(4243):1004-5. doi: 10.1126/science.1273580.
10
Effect of particulates on virus survival in seawater.
J Water Pollut Control Fed. 1975 Jan;47(1):93-103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验