Suppr超能文献

细胞死亡的实时追踪:技术进步让细胞死亡研究进入实时时代。

Cell death goes LIVE: technological advances in real-time tracking of cell death.

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

出版信息

Cell Cycle. 2010 Jun 15;9(12):2330-41. doi: 10.4161/cc.9.12.11911.

Abstract

Cell population can be viewed as a quantum system, which like Schrödinger's cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods.

摘要

细胞群体可以被视为一个量子系统,就像薛定谔的猫一样,它同时存在于允许生存和死亡的状态。跟踪和理解细胞死亡等具有高时空复杂性的过程中的细胞间变异性是当前系统生物学方法的核心。随着概率建模工具试图推断当前实验方法无法获得的信息,单细胞成像和组学(蛋白质组学、基因组学、代谢组学)技术的进步应该与计算工作齐头并进。在过去的几年中,我们取得了令人兴奋的技术进步,使我们能够以前所未有的准确性实时动态研究细胞死亡。这些方法基于创新的荧光测定法和重组蛋白、细胞的生物电学特性,以及最近的最先进的光谱学。在这里,我们回顾了用于动态跟踪细胞死亡的最具创新性的分析技术的现状,并探讨了这些方法的跨学科前景和未来挑战。

相似文献

1
Cell death goes LIVE: technological advances in real-time tracking of cell death.
Cell Cycle. 2010 Jun 15;9(12):2330-41. doi: 10.4161/cc.9.12.11911.
3
Proteomics and systems biology: current and future applications in the nutritional sciences.
Adv Nutr. 2011 Jul;2(4):355-64. doi: 10.3945/an.111.000554. Epub 2011 Jun 28.
4
Introduction: Advances in Plant Omics and Systems Biology.
Adv Exp Med Biol. 2021;1346:1-9. doi: 10.1007/978-3-030-80352-0_1.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Network modeling of single-cell omics data: challenges, opportunities, and progresses.
Emerg Top Life Sci. 2019 Aug;3(4):379-398. doi: 10.1042/etls20180176. Epub 2019 Jul 8.
9
Food allergy and omics.
J Allergy Clin Immunol. 2018 Jan;141(1):20-29. doi: 10.1016/j.jaci.2017.11.007.
10
CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
Biotechnol J. 2018 Mar;13(3):e1700227. doi: 10.1002/biot.201700227. Epub 2017 Nov 15.

引用本文的文献

1
Application of an open-chamber multi-channel microfluidic device to test chemotherapy drugs.
Sci Rep. 2020 Nov 23;10(1):20343. doi: 10.1038/s41598-020-77324-3.
2
A multivariate, quantitative assay that disentangles key kinetic parameters of primary human T cell function in vitro.
PLoS One. 2020 Nov 9;15(11):e0241421. doi: 10.1371/journal.pone.0241421. eCollection 2020.
4
Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms.
Cell Death Dis. 2013 Feb 7;4(2):e488. doi: 10.1038/cddis.2013.12.
5
Real-time cell viability assays using a new anthracycline derivative DRAQ7®.
Cytometry A. 2013 Feb;83(2):227-34. doi: 10.1002/cyto.a.22228. Epub 2012 Nov 16.
6
DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis.
Crit Rev Clin Lab Sci. 2012 Sep-Dec;49(5-6):199-217. doi: 10.3109/10408363.2012.738808. Epub 2012 Nov 9.
8
Rise of the micromachines: microfluidics and the future of cytometry.
Methods Cell Biol. 2011;102:105-25. doi: 10.1016/B978-0-12-374912-3.00005-5.
9
New biomarkers probing depth of cell senescence assessed by laser scanning cytometry.
Cytometry A. 2010 Nov;77(11):999-1007. doi: 10.1002/cyto.a.20983.

本文引用的文献

1
2
Single cell nanoparticle tracking to model cell cycle dynamics and compartmental inheritance.
Cell Cycle. 2010 Jan 1;9(1):121-30. doi: 10.4161/cc.9.1.10246. Epub 2010 Jan 5.
3
Dynamics and variability of ERK2 response to EGF in individual living cells.
Mol Cell. 2009 Dec 11;36(5):885-93. doi: 10.1016/j.molcel.2009.11.025.
4
Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration.
Nat Methods. 2010 Jan;7(1):67-73. doi: 10.1038/nmeth.1405. Epub 2009 Dec 6.
5
The role of autophagy in tumour development and cancer therapy.
Expert Rev Mol Med. 2009 Dec 2;11:e36. doi: 10.1017/S1462399409001306.
6
Spatial and temporal dynamics of mitochondrial membrane permeability waves during apoptosis.
Biophys J. 2009 Oct 21;97(8):2222-31. doi: 10.1016/j.bpj.2009.07.056.
7
Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17735-40. doi: 10.1073/pnas.0907367106. Epub 2009 Oct 1.
8
Live-cell imaging of caspase activation for high-content screening.
J Biomol Screen. 2009 Sep;14(8):956-69. doi: 10.1177/1087057109343207. Epub 2009 Sep 2.
10
Novel optical nanosensors for probing and imaging live cells.
Nanomedicine. 2010 Apr;6(2):214-26. doi: 10.1016/j.nano.2009.07.009. Epub 2009 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验