Suppr超能文献

CHO 组学综述:当前和新兴技术对中国仓鼠卵巢生物生产的影响。

CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.

机构信息

Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA.

出版信息

Biotechnol J. 2018 Mar;13(3):e1700227. doi: 10.1002/biot.201700227. Epub 2017 Nov 15.

Abstract

CHO cells are the most prevalent platform for modern bio-therapeutic production. Currently, there are several CHO cell lines used in bioproduction with distinct characteristics and unique genotypes and phenotypes. These differences limit advances in productivity and quality that can be achieved by the most common approaches to bioprocess optimization and cell line engineering. Incorporating omics-based approaches into current bioproduction processes will complement traditional methodologies to maximize gains from CHO engineering and bioprocess improvements. In order to highlight the utility of omics technologies in CHO bioproduction, the authors discuss current applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, lipidomics, fluxomics, glycomics, and multi-omics approaches and the potential they hold for the future of bioproduction. Multiple omics approaches are currently being used to improve CHO bioprocesses; however, the application of these technologies is still limited. As more CHO-omic datasets become available and integrated into systems models, the authors expect significant gains in product yield and quality. While individual omics technologies provide incremental improvements in bioproduction, the authors will likely see the most significant gains by applying multi-omics and systems biology approaches to individual CHO cell lines.

摘要

CHO 细胞是现代生物治疗生产中最常用的平台。目前,有几种 CHO 细胞系用于生物生产,具有不同的特点和独特的基因型和表型。这些差异限制了通过最常见的生物工艺优化和细胞系工程方法所能实现的生产力和质量的提高。将基于组学的方法纳入当前的生物生产过程,将与传统方法相结合,从 CHO 工程和生物工艺改进中获得最大收益。为了突出组学技术在 CHO 生物生产中的应用,作者讨论了基因组学、转录组学、蛋白质组学、代谢组学、脂质组学、通量组学、糖组学和多组学方法的当前应用以及局限性,以及它们对未来生物生产的潜力。目前正在使用多种组学方法来改进 CHO 生物工艺;然而,这些技术的应用仍然有限。随着更多的 CHO 组学数据集的出现并整合到系统模型中,作者预计产品产量和质量将显著提高。虽然单个组学技术为生物生产提供了增量改进,但通过将多组学和系统生物学方法应用于单个 CHO 细胞系,作者可能会看到最大的收益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验