Suppr超能文献

微机器的崛起:微流控技术与细胞计数技术的未来

Rise of the micromachines: microfluidics and the future of cytometry.

作者信息

Wlodkowic Donald, Darzynkiewicz Zbigniew

机构信息

The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand.

出版信息

Methods Cell Biol. 2011;102:105-25. doi: 10.1016/B978-0-12-374912-3.00005-5.

Abstract

The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies.

摘要

在过去十年里,流式细胞术和基于图像的细胞术领域取得了诸多创新。这些进展体现在当前传统流式细胞仪的小型化趋势以及分析组件的简化上。另一方面,流式成像和基于玻片的激光扫描细胞仪中多光谱成像细胞术的成熟,为提高数据质量和通量带来了巨大希望,同时也为细胞和组织的多参数实时分析开辟了新前景。然而,重要的是,细胞术仍然是现代工程中一个充满活力且可行的领域。过去几年取得的技术里程碑和创新成果,正使下一代细胞仪走出集中式核心设施,同时使其价格更亲民、使用更便捷。在此背景下,微流控芯片实验室(LOC)技术的发展是推动细胞术进步的最具创新性和成本效益的方法之一。LOC设备有望实现新功能,既能克服当前的局限性,又能大幅降低成本、提高灵敏度并实现超高通量。我们可以预期,新型微制造细胞术系统当前的发展速度将为细胞术领域开辟开创性的前景,引领细胞术技术的复兴,最重要的是,极大地支持这些生物分析技术更广泛的应用。

相似文献

1
Rise of the micromachines: microfluidics and the future of cytometry.
Methods Cell Biol. 2011;102:105-25. doi: 10.1016/B978-0-12-374912-3.00005-5.
2
Cytometry in cell necrobiology revisited. Recent advances and new vistas.
Cytometry A. 2010 Jul;77(7):591-606. doi: 10.1002/cyto.a.20889.
3
Micro- and nanotechnology in cell separation.
Int J Nanomedicine. 2006;1(1):3-14. doi: 10.2147/nano.2006.1.1.3.
4
The intersection of flow cytometry with microfluidics and microfabrication.
Lab Chip. 2014 Mar 21;14(6):1044-59. doi: 10.1039/c3lc51152a.
5
Current Trends of Microfluidic Single-Cell Technologies.
Int J Mol Sci. 2018 Oct 12;19(10):3143. doi: 10.3390/ijms19103143.
6
Recent advances in electric analysis of cells in microfluidic systems.
Anal Bioanal Chem. 2008 Jun;391(3):933-42. doi: 10.1007/s00216-008-1899-x. Epub 2008 Mar 12.
7
Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
Methods Mol Biol. 2016;1389:23-45. doi: 10.1007/978-1-4939-3302-0_3.
8
Microfabricated analytical systems for integrated cancer cytomics.
Anal Bioanal Chem. 2010 Sep;398(1):193-209. doi: 10.1007/s00216-010-3722-8. Epub 2010 Apr 25.
9
Wormometry-on-a-chip: Innovative technologies for in situ analysis of small multicellular organisms.
Cytometry A. 2011 Oct;79(10):799-813. doi: 10.1002/cyto.a.21070. Epub 2011 May 4.
10
Microfluidic Flow Cytometry for Single-Cell Protein Analysis.
Methods Mol Biol. 2015;1346:69-83. doi: 10.1007/978-1-4939-2987-0_6.

引用本文的文献

2
Understanding breast cancer heterogeneity through non-genetic heterogeneity.
Breast Cancer. 2021 Jul;28(4):777-791. doi: 10.1007/s12282-021-01237-w. Epub 2021 Mar 15.
3
Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification.
Technology (Singap World Sci). 2018 Mar;6(1):1-23. doi: 10.1142/S2339547818300019. Epub 2018 Mar 16.
4
Tumour Heterogeneity: The Key Advantages of Single-Cell Analysis.
Int J Mol Sci. 2016 Dec 20;17(12):2142. doi: 10.3390/ijms17122142.
5
A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.
PLoS One. 2014 Aug 11;9(8):e104539. doi: 10.1371/journal.pone.0104539. eCollection 2014.
6
Microfluidic chip-based technologies: emerging platforms for cancer diagnosis.
BMC Biotechnol. 2013 Sep 27;13:76. doi: 10.1186/1472-6750-13-76.
7
Chromosomes in the flow to simplify genome analysis.
Funct Integr Genomics. 2012 Aug;12(3):397-416. doi: 10.1007/s10142-012-0293-0. Epub 2012 Aug 16.
8
From single cells to deep phenotypes in cancer.
Nat Biotechnol. 2012 Jul 10;30(7):639-47. doi: 10.1038/nbt.2283.
9
Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy.
J Control Release. 2012 Dec 10;164(2):192-204. doi: 10.1016/j.jconrel.2012.04.045. Epub 2012 May 18.

本文引用的文献

1
Integration of single-cell trapping and impedance measurement utilizing microwell electrodes.
Biosens Bioelectron. 2011 Jan 15;26(5):2025-31. doi: 10.1016/j.bios.2010.08.080. Epub 2010 Sep 9.
2
Are microfluidics-based blood viscometers ready for point-of-care applications? A review.
Crit Rev Biomed Eng. 2010;38(2):189-200. doi: 10.1615/critrevbiomedeng.v38.i2.50.
3
Tumors on chips: oncology meets microfluidics.
Curr Opin Chem Biol. 2010 Oct;14(5):556-67. doi: 10.1016/j.cbpa.2010.08.016. Epub 2010 Sep 9.
4
Flow cytometry and laser scanning cytometry, a comparison of techniques.
J Clin Monit Comput. 2010 Aug;24(4):251-9. doi: 10.1007/s10877-010-9242-4. Epub 2010 Jul 13.
5
Microfluidic impedance-based flow cytometry.
Cytometry A. 2010 Jul;77(7):648-66. doi: 10.1002/cyto.a.20910.
6
Single cell trapping and DNA damage analysis using microwell arrays.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10008-13. doi: 10.1073/pnas.1004056107. Epub 2010 May 13.
7
Cell death goes LIVE: technological advances in real-time tracking of cell death.
Cell Cycle. 2010 Jun 15;9(12):2330-41. doi: 10.4161/cc.9.12.11911.
8
Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics.
Expert Rev Mol Diagn. 2010 May;10(4):521-30. doi: 10.1586/erm.10.28.
9
Miniaturization of biological assays -- overview on microwell devices for single-cell analyses.
Biochim Biophys Acta. 2011 Mar;1810(3):308-16. doi: 10.1016/j.bbagen.2010.04.009. Epub 2010 May 6.
10
Microfabricated analytical systems for integrated cancer cytomics.
Anal Bioanal Chem. 2010 Sep;398(1):193-209. doi: 10.1007/s00216-010-3722-8. Epub 2010 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验