Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Syst Biol. 2010 Mar;59(2):132-44. doi: 10.1093/sysbio/syp083. Epub 2009 Dec 10.
Polyploidy, the genome wide duplication of chromosome number, is a key feature in eukaryote evolution. Polyploidy exists in diverse groups including animals, fungi, and invertebrates but is especially prevalent in plants with most, if not all, plant species having descended from a polyploidization event. Polyploids often differ markedly from their diploid progenitors in morphological, physiological, and life history characteristics as well as rates of adaptation. The altered characteristics displayed by polyploids may contribute to their success in novel ecological habitats. Clearly, a better understanding of the processes underlying changes in the number of chromosomes within genomes is a key goal in our understanding of speciation and adaptation for a wide range of families and genera. Despite the fundamental role of chromosome number change in eukaryotic evolution, probabilistic models describing the evolution of chromosome number along a phylogeny have not yet been formulated. We present a series of likelihood models, each representing a different hypothesis regarding the evolution of chromosome number along a given phylogeny. These models allow us to reconstruct ancestral chromosome numbers and to estimate the expected number of polyploidization events and single chromosome changes (dysploidy) that occurred along a phylogeny. We test, using simulations, the accuracy of this approach and its dependence on the number of taxa and tree length. We then demonstrate the application of the method for the study of chromosome number evolution in 4 plant genera: Aristolochia, Carex, Passiflora, and Helianthus. Considering the depth of the available cytological and phylogenetic data, formal models of chromosome number evolution are expected to advance significantly our understanding of the importance of polyploidy and dysploidy across different taxonomic groups.
多倍体是指染色体数量的全基因组重复,是真核生物进化的一个关键特征。多倍体存在于包括动物、真菌和无脊椎动物在内的多个群体中,但在植物中尤其普遍,几乎所有的植物物种都起源于多倍化事件。多倍体在形态、生理和生活史特征以及适应速度方面与它们的二倍体祖先明显不同。多倍体所表现出的改变的特征可能有助于它们在新的生态生境中取得成功。显然,更好地理解基因组中染色体数量变化的过程是我们理解广泛的科和属的物种形成和适应的关键目标。尽管染色体数目的变化在真核生物进化中起着基础性的作用,但描述沿系统发育染色体数演变的概率模型尚未被提出。我们提出了一系列似然模型,每个模型代表了关于给定系统发育中染色体数演变的不同假设。这些模型使我们能够重建祖先的染色体数,并估计在系统发育中发生的多倍化事件和单个染色体变化(非整倍体)的预期数量。我们使用模拟测试了这种方法的准确性及其对分类群数量和树长的依赖性。然后,我们展示了该方法在研究 4 个植物属(Aristolochia、Carex、Passiflora 和 Helianthus)的染色体数进化中的应用。考虑到现有细胞学和系统发育数据的深度,染色体数进化的形式模型有望极大地提高我们对多倍体和非整倍体在不同分类群中的重要性的理解。