Suppr超能文献

将血流动力学与血管壁力学和力学生物学相结合以理解颅内动脉瘤。

Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms.

作者信息

Humphrey J D

机构信息

Department of Biomedical Engineering and M.E. DeBakey Institute Texas A&M University, College Station, USA.

出版信息

Int J Comut Fluid Dyn. 2009 Sep 1;23(8):569-581. doi: 10.1080/10618560902832712.

Abstract

Arteries exhibit a remarkable ability to adapt in response to sustained alterations in hemodynamic loading, to heal in response to injuries, and to compensate in response to diverse disease conditions. Nevertheless, such compensatory adaptations are limited and many vascular disorders, if untreated, lead to significant morbidity or mortality. Parallel advances in vascular biology, medical imaging, biomechanics, and computational methods promise to provide increased insight into many arterial diseases, including intracranial aneurysms. In particular, although it may be possible to identify useful clinical correlations between either the blood flow patterns within or the shape of aneurysms and their rupture-potential, our ultimate goal should be to couple studies of hemodynamics with those of wall mechanics and the underlying mechanobiology so that we can understand better the mechanisms by which aneurysms arise, enlarge, and rupture and thereby identify better methods of treatment. This paper presents one such approach to fluid-solid-growth (FSG) modeling of intracranial aneurysms.

摘要

动脉表现出非凡的能力,能够适应血流动力学负荷的持续变化,对损伤做出愈合反应,并对各种疾病状况进行代偿。然而,这种代偿性适应是有限的,许多血管疾病如果不治疗,会导致严重的发病率或死亡率。血管生物学、医学成像、生物力学和计算方法的并行进展有望为包括颅内动脉瘤在内的许多动脉疾病提供更多的见解。特别是,虽然有可能确定动脉瘤内的血流模式或其形状与其破裂潜能之间有用的临床相关性,但我们的最终目标应该是将血流动力学研究与血管壁力学及潜在的力学生物学研究相结合,以便我们能够更好地理解动脉瘤产生、扩大和破裂的机制,从而确定更好的治疗方法。本文介绍了一种用于颅内动脉瘤流固生长(FSG)建模的方法。

相似文献

1
Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms.
Int J Comut Fluid Dyn. 2009 Sep 1;23(8):569-581. doi: 10.1080/10618560902832712.
2
Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models.
Annu Rev Biomed Eng. 2008;10:221-46. doi: 10.1146/annurev.bioeng.10.061807.160439.
3
Toward large-scale computational fluid-solid-growth models of intracranial aneurysms.
Yale J Biol Med. 2012 Jun;85(2):217-28. Epub 2012 Jun 25.
4
Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs Patient-specific geometries.
Comput Methods Programs Biomed. 2022 Dec;227:107237. doi: 10.1016/j.cmpb.2022.107237. Epub 2022 Nov 9.
5
VASCULAR MECHANICS, MECHANOBIOLOGY, AND REMODELING.
J Mech Med Biol. 2009;9(2):243-257. doi: 10.1142/S021951940900295X.
6
Basic Principles of Hemodynamics and Cerebral Aneurysms.
World Neurosurg. 2016 Apr;88:311-319. doi: 10.1016/j.wneu.2016.01.031. Epub 2016 Jan 22.
8
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.
9
Hemodynamic simulation of abdominal aortic aneurysm on idealised models: Investigation of stress parameters during disease progression.
Comput Methods Programs Biomed. 2022 Jan;213:106508. doi: 10.1016/j.cmpb.2021.106508. Epub 2021 Nov 1.
10
Hemodynamic Differences in Intracranial Aneurysms before and after Rupture.
AJNR Am J Neuroradiol. 2015 Oct;36(10):1927-33. doi: 10.3174/ajnr.A4385. Epub 2015 Jun 18.

引用本文的文献

1
Introducing Bayesian Analysis for Clinicians: Sex-Associated Risk Assessment of Intracranial Aneurysms.
Acta Neurochir Suppl. 2025;136:19-26. doi: 10.1007/978-3-031-89844-0_3.
2
A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms.
Biomed Res Int. 2015;2015:861627. doi: 10.1155/2015/861627. Epub 2015 Oct 5.
4
Computational fluid dynamics in aneurysm research: critical reflections, future directions.
AJNR Am J Neuroradiol. 2012 Jun;33(6):992-5. doi: 10.3174/ajnr.A3192. Epub 2012 May 31.
5
Abrupt increase in rat carotid blood flow induces rapid alteration of artery mechanical properties.
J Mech Behav Biomed Mater. 2011 Jan;4(1):9-15. doi: 10.1016/j.jmbbm.2010.08.003. Epub 2010 Aug 20.

本文引用的文献

1
A Mechanobiologically Equilibrated Constrained Mixture Model for Growth and Remodeling of Soft Tissues.
Z Angew Math Mech. 2018 Dec;98(12):2048-2071. doi: 10.1002/zamm.201700302. Epub 2018 Mar 23.
2
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.
3
Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
J Biomech Eng. 2009 Oct;131(10):101006. doi: 10.1115/1.3192144.
4
Hemodynamics of Cerebral Aneurysms.
Annu Rev Fluid Mech. 2009 Jan 1;41:91-107. doi: 10.1146/annurev.fluid.40.111406.102126.
5
Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling.
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3585-606. doi: 10.1098/rsta.2009.0113.
6
Normal basilar artery structure and biaxial mechanical behaviour.
Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):539-51. doi: 10.1080/10255840801949793.
7
Modeling of saccular aneurysm growth in a human middle cerebral artery.
J Biomech Eng. 2008 Oct;130(5):051012. doi: 10.1115/1.2965597.
8
Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms.
Med Biol Eng Comput. 2008 Nov;46(11):1113-20. doi: 10.1007/s11517-008-0400-5. Epub 2008 Oct 18.
9
Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure.
J R Soc Interface. 2009 Mar 6;6(32):293-306. doi: 10.1098/rsif.2008.0254.
10
Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models.
Annu Rev Biomed Eng. 2008;10:221-46. doi: 10.1146/annurev.bioeng.10.061807.160439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验