Suppr超能文献

心血管模拟中流固生长建模的计算框架

A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.

作者信息

Figueroa C Alberto, Baek Seungik, Taylor Charles A, Humphrey Jay D

机构信息

Department of Bioengineering, Stanford University.

出版信息

Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.

Abstract

It is now well known that altered hemodynamics can alter the genes that are expressed by diverse vascular cells, which in turn plays a critical role in the ability of a blood vessel to adapt to new biomechanical conditions and governs the natural history of the progression of many types of disease. Fortunately, when taken together, recent advances in molecular and cell biology, in vivo medical imaging, biomechanics, computational mechanics, and computing power provide an unprecedented opportunity to begin to understand such hemodynamic effects on vascular biology, physiology, and pathophysiology. Moreover, with increased understanding will come the promise of improved designs for medical devices and clinical interventions. The goal of this paper, therefore, is to present a new computational framework that brings together recent advances in computational biosolid and biofluid mechanics that can exploit new information on the biology of vascular growth and remodeling as well as in vivo patient-specific medical imaging so as to enable realistic simulations of vascular adaptations, disease progression, and clinical intervention.

摘要

现在众所周知,血流动力学改变可改变多种血管细胞所表达的基因,这反过来又在血管适应新生物力学条件的能力中起关键作用,并决定许多类型疾病进展的自然史。幸运的是,综合来看,分子与细胞生物学、体内医学成像、生物力学、计算力学以及计算能力方面的最新进展提供了前所未有的机会,可着手理解此类血流动力学对血管生物学、生理学和病理生理学的影响。此外,随着认识的加深,有望改进医疗设备设计和临床干预措施。因此,本文的目标是提出一个新的计算框架,该框架汇集了计算生物固体力学和生物流体力学的最新进展,能够利用血管生长和重塑生物学以及体内患者特异性医学成像的新信息,从而实现对血管适应、疾病进展和临床干预的逼真模拟。

相似文献

1
A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3583-3602. doi: 10.1016/j.cma.2008.09.013.
2
Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms.
Int J Comut Fluid Dyn. 2009 Sep 1;23(8):569-581. doi: 10.1080/10618560902832712.
3
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics.
Comput Methods Appl Mech Eng. 2009 Sep 15;198(45-46):3514-3523. doi: 10.1016/j.cma.2009.02.004.
4
Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models.
Annu Rev Biomed Eng. 2008;10:221-46. doi: 10.1146/annurev.bioeng.10.061807.160439.
5
Toward large-scale computational fluid-solid-growth models of intracranial aneurysms.
Yale J Biol Med. 2012 Jun;85(2):217-28. Epub 2012 Jun 25.
8
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.
Ann Biomed Eng. 2016 Sep;44(9):2642-60. doi: 10.1007/s10439-016-1628-0. Epub 2016 May 2.
10
Lagrangian postprocessing of computational hemodynamics.
Ann Biomed Eng. 2015 Jan;43(1):41-58. doi: 10.1007/s10439-014-1070-0. Epub 2014 Jul 25.

引用本文的文献

1
Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling.
J R Soc Interface. 2025 Jan;22(222):20240361. doi: 10.1098/rsif.2024.0361. Epub 2025 Jan 29.
2
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method.
Comput Methods Appl Mech Eng. 2024 Nov 1;431. doi: 10.1016/j.cma.2024.117259. Epub 2024 Aug 6.
4
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
5
A Fluid-Solid-Growth Solver for Cardiovascular Modeling.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116312. Epub 2023 Aug 9.
6
Aortic Remodeling Kinetics in Response to Coarctation-Induced Mechanical Perturbations.
Biomedicines. 2023 Jun 25;11(7):1817. doi: 10.3390/biomedicines11071817.
7
A Biochemomechanical Model of Collagen Turnover in Arterial Adaptations to Hemodynamic Loading.
Res Sq. 2023 Feb 6:rs.3.rs-2535591. doi: 10.21203/rs.3.rs-2535591/v1.
8
Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease.
Biophys Rev (Melville). 2023 Mar;4(1):011301. doi: 10.1063/5.0109400. Epub 2023 Jan 13.
9
A 3D multi-agent-based model for lumen morphogenesis: the role of the biophysical properties of the extracellular matrix.
Eng Comput. 2022;38(5):4135-4149. doi: 10.1007/s00366-022-01654-1. Epub 2022 May 6.
10
Blood-Artery Interaction in Calcified Aortas and Abdominal Aortic Aneurysms.
Extreme Mech Lett. 2022 Jul;54. doi: 10.1016/j.eml.2022.101684. Epub 2022 Mar 14.

本文引用的文献

1
Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models.
Annu Rev Biomed Eng. 2008;10:221-46. doi: 10.1146/annurev.bioeng.10.061807.160439.
2
Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels.
Cell Biochem Biophys. 2008;50(2):53-78. doi: 10.1007/s12013-007-9002-3. Epub 2007 Oct 24.
3
Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries.
Ann Biomed Eng. 2007 Oct;35(10):1821-37. doi: 10.1007/s10439-007-9352-4. Epub 2007 Jul 19.
4
Stress-modulated collagen fiber remodeling in a human carotid bifurcation.
J Theor Biol. 2007 Oct 7;248(3):460-70. doi: 10.1016/j.jtbi.2007.05.037. Epub 2007 Jun 6.
5
Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations.
Ann Biomed Eng. 2007 Sep;35(9):1498-509. doi: 10.1007/s10439-007-9322-x. Epub 2007 May 9.
6
Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms.
J Biomech. 2007;40(3):693-6. doi: 10.1016/j.jbiomech.2006.01.015. Epub 2006 Mar 20.
7
A theoretical model of enlarging intracranial fusiform aneurysms.
J Biomech Eng. 2006 Feb;128(1):142-9. doi: 10.1115/1.2132374.
9
A computational model for collagen fibre remodelling in the arterial wall.
J Theor Biol. 2004 Jan 7;226(1):53-64. doi: 10.1016/j.jtbi.2003.08.004.
10
A critical role for elastin signaling in vascular morphogenesis and disease.
Development. 2003 Jan;130(2):411-23. doi: 10.1242/dev.00223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验