Suppr超能文献

在一个集成框架中,从化学、基因组和药理学数据预测药物-靶标相互作用。

Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.

机构信息

Mines ParisTech, Centre for Computational Biology, 35 rue Saint-Honore, F-77305 Fontainebleau Cedex, Institut Curie, F-75248, INSERM U900, F-75248, Paris, France.

出版信息

Bioinformatics. 2010 Jun 15;26(12):i246-54. doi: 10.1093/bioinformatics/btq176.

Abstract

MOTIVATION

In silico prediction of drug-target interactions from heterogeneous biological data is critical in the search for drugs and therapeutic targets for known diseases such as cancers. There is therefore a strong incentive to develop new methods capable of detecting these potential drug-target interactions efficiently.

RESULTS

In this article, we investigate the relationship between the chemical space, the pharmacological space and the topology of drug-target interaction networks, and show that drug-target interactions are more correlated with pharmacological effect similarity than with chemical structure similarity. We then develop a new method to predict unknown drug-target interactions from chemical, genomic and pharmacological data on a large scale. The proposed method consists of two steps: (i) prediction of pharmacological effects from chemical structures of given compounds and (ii) inference of unknown drug-target interactions based on the pharmacological effect similarity in the framework of supervised bipartite graph inference. The originality of the proposed method lies in the prediction of potential pharmacological similarity for any drug candidate compounds and in the integration of chemical, genomic and pharmacological data in a unified framework. In the results, we make predictions for four classes of important drug-target interactions involving enzymes, ion channels, GPCRs and nuclear receptors. Our comprehensively predicted drug-target interaction networks enable us to suggest many potential drug-target interactions and to increase research productivity toward genomic drug discovery.

SUPPLEMENTARY INFORMATION

Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/pharmaco/.

AVAILABILITY

Softwares are available upon request.

摘要

动机

从异质生物数据中预测药物-靶标相互作用对于寻找已知疾病(如癌症)的药物和治疗靶标至关重要。因此,强烈需要开发能够有效地检测这些潜在药物-靶标相互作用的新方法。

结果

在本文中,我们研究了化学空间、药理空间和药物-靶标相互作用网络拓扑之间的关系,并表明药物-靶标相互作用与药理效应相似性的相关性大于与化学结构相似性的相关性。然后,我们开发了一种从大规模的化学、基因组和药理学数据中预测未知药物-靶标相互作用的新方法。该方法包括两个步骤:(i)从给定化合物的化学结构预测药理效应,(ii)基于监督二分图推断框架,根据药理效应相似性推断未知药物-靶标相互作用。该方法的创新性在于预测任何候选药物化合物的潜在药理相似性,以及在统一框架中整合化学、基因组和药理学数据。在结果中,我们对涉及酶、离子通道、GPCR 和核受体的四类重要药物-靶标相互作用进行了预测。我们全面预测的药物-靶标相互作用网络使我们能够提出许多潜在的药物-靶标相互作用,并提高基因组药物发现的研究生产力。

补充信息

数据集和所有预测结果均可在 http://cbio.ensmp.fr/~yyamanishi/pharmaco/ 获得。

可用性

软件可根据要求提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e2/2881361/31976fafe684/btq176f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验