Suppr超能文献

邻里密度和单词频率可预测幼儿的词汇量。

Neighborhood density and word frequency predict vocabulary size in toddlers.

机构信息

Curtin University of Technology, Perth, Australia.

出版信息

J Speech Lang Hear Res. 2010 Jun;53(3):670-83. doi: 10.1044/1092-4388(2009/08-0254).

Abstract

PURPOSE

To document the lexical characteristics of neighborhood density (ND) and word frequency (WF) in the lexicons of a large sample of English-speaking toddlers.

METHOD

Parents of 222 British-English-speaking children aged 27(+/-3) months completed a British adaptation of the MacArthur-Bates Communicative Development Inventory: Words and Sentences (MCDI; Klee & Harrison, 2001). Child words were coded for ND and WF, and the relationships among vocabulary, ND, and WF were examined. A cut-point of -1 SD below the mean on the MCDI classified children into one of two groups: low or high vocabulary size. Group differences on ND and WF were examined using nonparametric statistics.

RESULTS

In a hierarchical regression, ND and WF accounted for 47% and 14% of unique variance in MCDI scores, respectively. Low-vocabulary children scored significantly higher on ND and significantly lower on WF than did high-vocabulary children, but there was more variability in ND and WF for children at the lowest points of the vocabulary continuum.

CONCLUSION

Children at the lowest points of a continuum of vocabulary size may be extracting statistical properties of the input language in a manner quite different from their more able age peers.

摘要

目的

记录大量英语幼儿词汇中邻里密度(ND)和单词频率(WF)的词汇特征。

方法

222 名 27(+/-3)个月大的英国英语幼儿的父母完成了英国版的麦克阿瑟-贝茨交际发展量表:单词和句子(MCDI;Klee & Harrison,2001)。对儿童单词进行 ND 和 WF 编码,并检查词汇量、ND 和 WF 之间的关系。MCDI 均值减去 1 个标准差的截点将儿童分为词汇量低或高的两组。使用非参数统计检验组间 ND 和 WF 的差异。

结果

在分层回归中,ND 和 WF 分别解释了 MCDI 得分中 47%和 14%的独特方差。低词汇量儿童的 ND 得分显著高于高词汇量儿童,WF 得分显著低于高词汇量儿童,但词汇量最低的儿童的 ND 和 WF 差异更大。

结论

在词汇量连续体的最低点的儿童可能以与年龄较大的能力较强的儿童非常不同的方式提取输入语言的统计特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验