Department of Computer Science, UC Davis, One Shields Avenue, Davis, CA 95616, USA.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):588-97. doi: 10.1109/TCBB.2010.57.
A tanglegram is a pair of trees on the same set of leaves with matching leaves in the two trees joined by an edge. Tanglegrams are widely used in biology--to compare evolutionary histories of host and parasite species and to analyze genes of species in the same geographical area. We consider optimization problems in tanglegram drawings. We show a linear time algorithm to decide if a tanglegram admits a planar embedding by a reduction to the planar graph drawing problem. This problem was also studied by Fernau et al. A similar reduction to a graph crossing problem also helps to solve an open problem they posed, showing a fixed-parameter tractable algorithm for minimizing the number of crossings over all d-ary trees. For the case where one tree is fixed, we show an O(n log n) algorithm to determine the drawing of the second tree that minimizes the number of crossings. This improves the bound from earlier methods. We introduce a new optimization criterion using Spearman's footrule distance and give an O(n²) algorithm. We also show integer programming formulations to quickly obtain tanglegram drawings that minimize the two optimization measures discussed. We prove lower bounds on the maximum gap between the optimal solution and the heuristic of Dwyer and Schreiber to minimize crossings.
缠结图是指在同一组叶子上的两棵树,两棵树中匹配的叶子通过一条边连接起来。缠结图在生物学中被广泛应用——比较宿主和寄生虫物种的进化历史,以及分析同一地理区域的物种的基因。我们考虑了缠结图绘制中的优化问题。我们通过将平面图绘制问题归约为平面图问题,展示了一种线性时间算法来决定缠结图是否可以通过平面嵌入。Fernau 等人也研究了这个问题。类似的归约到图交叉问题也有助于解决他们提出的一个开放性问题,为所有 d 叉树的交叉数最小化问题展示了一个固定参数可解的算法。对于一棵树固定的情况,我们展示了一种 O(n log n)算法来确定第二棵树的绘制,以最小化交叉数。这改进了早期方法的界限。我们引入了一种新的使用斯皮尔曼步长距离的优化标准,并给出了一个 O(n²)算法。我们还展示了整数规划公式,以快速获得最小化这两个优化度量的缠结图绘制。我们证明了 Dwyer 和 Schreiber 最小化交叉数的启发式算法的最优解与启发式算法之间的最大差距的下界。