Suppr超能文献

网络反相关、全局回归和相移软组织校正。

Network anticorrelations, global regression, and phase-shifted soft tissue correction.

机构信息

Division of Neuroradiology, University of Utah, Salt Lake City, UT 84132, USA.

出版信息

Hum Brain Mapp. 2011 Jun;32(6):919-34. doi: 10.1002/hbm.21079. Epub 2010 Jun 9.

Abstract

Synchronized low-frequency BOLD fluctuations are observed in dissociable large-scale, distributed networks with functional specialization. Two such networks, referred to as the task-positive network (TPN) and the task-negative network (TNN) because they tend to be active or inactive during cognitively demanding tasks, show reproducible anticorrelation of resting BOLD fluctuations after removal of the global brain signal. Because global signal regression mandates that anticorrelated regions to a given seed region must exist, it is unclear whether such anticorrelations are an artifact of global regression or an intrinsic property of neural activity. In this study, we demonstrate from simulated data that spurious anticorrelations are introduced during global regression for any two networks as a linear function of their size. Using actual resting state data, we also show that both the TPN and TNN become anticorrelated with the orbits when soft tissues are included in the global regression algorithm. Finally, we propose a technique using phase-shifted soft tissue regression (PSTCor) that allows improved correction of global physiological artifacts without global regression that shows improved anatomic specificity to global regression but does not show significant network anticorrelations. These results imply that observed anticorrelations between TNN and TPN may be largely or entirely artifactual in the resting state. These results also imply that differences in network anticorrelations attributed to pathophysiological or behavioral states may be due to differences in network size or recruitment rather than actual anticorrelations.

摘要

在具有功能专业化的可分离的大规模分布式网络中观察到同步的低频 BOLD 波动。这两个网络被称为任务正网络(TPN)和任务负网络(TNN),因为它们在认知要求高的任务中往往处于活跃或不活跃状态,在去除全局脑信号后,静息 BOLD 波动具有可重复的反相关。由于全局信号回归要求与给定种子区域相关的区域必须存在,因此尚不清楚这种反相关是全局回归的伪影还是神经活动的固有特性。在这项研究中,我们从模拟数据中证明,对于任何两个网络,全局回归都会引入虚假的反相关,这是它们大小的线性函数。使用实际的静息状态数据,我们还表明,当将软组织包含在全局回归算法中时,TPN 和 TNN 都会与轨道产生反相关。最后,我们提出了一种使用相位偏移软组织回归(PSTCor)的技术,该技术可以在不进行全局回归的情况下改善对全局生理伪影的校正,从而提高对全局回归的解剖特异性,但不会显示出明显的网络反相关。这些结果表明,在静息状态下,TPN 和 TNN 之间观察到的反相关可能在很大程度上或完全是人为的。这些结果还表明,归因于病理生理或行为状态的网络反相关的差异可能是由于网络大小或招募的差异,而不是实际的反相关。

相似文献

2
Anticorrelations in resting state networks without global signal regression.静息态网络中无需回归全局信号的反相关。
Neuroimage. 2012 Jan 16;59(2):1420-8. doi: 10.1016/j.neuroimage.2011.08.048. Epub 2011 Aug 26.

引用本文的文献

本文引用的文献

1
Toward discovery science of human brain function.迈向人类大脑功能的发现科学。
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
3
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
7
Predicting human resting-state functional connectivity from structural connectivity.从结构连接性预测人类静息态功能连接性。
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40. doi: 10.1073/pnas.0811168106. Epub 2009 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验