Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute for Medical Research, Manhasset, New York 11030, USA.
J Neurosci. 2013 Apr 10;33(15):6333-42. doi: 10.1523/JNEUROSCI.4837-12.2013.
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
对内在功能磁共振成像 BOLD 信号波动的分析可靠地揭示了大脑中相关和反相关的功能网络。由于 BOLD 信号是神经元活动的间接测量,并且反相关可以通过预处理步骤引入,例如全局信号回归,因此 BOLD 波动的相关性和反相关性的神经生理学意义是一个争论的来源。在这里,我们通过检查直接从 5 名患者的皮质表面记录的电生理高 γ 功率信号的相关 BOLD 波动和相关波动之间的空间组织对应关系来解决这个问题。我们证明,正 BOLD 相关和负 BOLD 相关都有反映自发神经元活动波动的神经生理学相关性。尽管对 BOLD 信号应用全局信号回归会导致一些在 ECoG 数据中不明显的 BOLD 反相关,但它总体上增强了神经元-血液动力学的对应关系。总之,这些发现为 BOLD 相关性和反相关性的神经生理学保真度提供了支持。