Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran.
Hum Brain Mapp. 2011 May;32(5):699-715. doi: 10.1002/hbm.21057.
We propose a novel approach for evaluating the performance of activation detection in real (experimental) datasets using a new mutual information (MI)-based metric and compare its sensitivity to several existing performance metrics in both simulated and real datasets. The proposed approach is based on measuring the approximate MI between the fMRI time-series of a validation dataset and a calculated activation map (thresholded label map or continuous map) from an independent training dataset. The MI metric is used to measure the amount of information preserved during the extraction of an activation map from experimentally related fMRI time-series. The processing method that preserves maximal information between the maps and related time-series is proposed to be superior. The results on simulation datasets for multiple analysis models are consistent with the results of ROC curves, but are shown to have lower information content than for real datasets, limiting their generalizability. In real datasets for group analyses using the general linear model (GLM; FSL4 and SPM5), we show that MI values are (1) larger for groups of 15 versus 10 subjects and (2) more sensitive measures than reproducibility (for continuous maps) or Jaccard overlap metrics (for thresholded maps). We also show that (1) for an increasing fraction of nominally active voxels, both MI and false discovery rate (FDR) increase, and (2) at a fixed FDR, GLM using FSL4 tends to extract more voxels and more information than SPM5 using the default processing techniques in each package.
我们提出了一种新的方法,使用基于互信息 (MI) 的新度量标准来评估在真实 (实验) 数据集上的激活检测性能,并将其在模拟数据集和真实数据集上与几种现有性能度量标准的敏感性进行比较。所提出的方法基于测量验证数据集的 fMRI 时间序列与独立训练数据集的计算激活图(阈值标签图或连续图)之间的近似 MI。MI 度量用于测量从与实验相关的 fMRI 时间序列中提取激活图时保留的信息量。提出了一种保留图之间和相关时间序列之间最大信息量的处理方法,该方法被认为是优越的。对于多个分析模型的模拟数据集的结果与 ROC 曲线的结果一致,但与真实数据集相比,其信息量较低,限制了它们的通用性。在使用一般线性模型 (GLM;FSL4 和 SPM5) 进行组分析的真实数据集上,我们表明 MI 值 (1) 对于 15 个与 10 个对象的组更大,(2) 比可重复性(对于连续图)或 Jaccard 重叠度量(对于阈值图)更敏感。我们还表明 (1) 对于名义上活跃体素的比例增加,MI 和错误发现率 (FDR) 都增加,以及 (2) 在固定 FDR 下,FSL4 中的 GLM 倾向于提取比 SPM5 更多的体素和更多的信息,使用每个软件包中的默认处理技术。