Suppr超能文献

Decisional trees in renal transplant follow-up.

作者信息

Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiglio R

机构信息

Department of Nephrology, Annunziata Hospital, Cosenza, Italy.

出版信息

Transplant Proc. 2010 May;42(4):1134-6. doi: 10.1016/j.transproceed.2010.03.061.

Abstract

INTRODUCTION

The predictive potentialities of application of data mining algorithms to medical research are well known. In this article, we have applied to a transplant population classification trees to build predictive models of graft failure, evaluating the interactions between body mass index (BMI) and other risk factors. The decision trees have been widely used to represent classification rules in a population by a hierarchical sequential structure.

PATIENTS AND METHODS

We retrospectively studied 194 renal transplant patients with 5 years of follow-up (128 males, 66 females, mean age at time of transplant of 43.9 +/- 12.5 years). Exclusion criteria were: age < 18 years, multiorgan transplant, and retransplant. The BMI was calculated at the time of transplantation. In the classification algorithm, we considered the following parameters: age, sex, time on dialysis, donor type, donor age, HLA mismatches, delayed graft function (DGF), acute rejection episode (ARE), and chronic allograft nephropathy (CAN). The primary endpoint was graft loss within 5-years follow-up.

RESULTS

The classification algorithm produced a decision tree that allowed us to evaluate the interactions between ARE, DGF, CAN, and BMI on graft outcomes, producing a validation set with 88.2% sensitivity and 73.8% specificity. Our model was able to highlight that subjects at risk of graft loss experienced one or more events of ARE, developed DGF and CAN, or has a BMI > 24.8 kg/m(2) and CAN.

CONCLUSIONS

The use of decision trees in clinical practice may be a suitable alternative to the traditional statistical methods, since it may allow one to analyze interactions between various risk factors beyond the previous knowledge.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验