Suppr超能文献

慢性肾脏病中的人工智能:方法与潜在应用

Artificial intelligence in chronic kidney diseases: methodology and potential applications.

作者信息

Simeri Andrea, Pezzi Giuseppe, Arena Roberta, Papalia Giuliana, Szili-Torok Tamas, Greco Rosita, Veltri Pierangelo, Greco Gianluigi, Pezzi Vincenzo, Provenzano Michele, Zaza Gianluigi

机构信息

Department of Mathematics and Computer Science, University of Calabria, 87036, Rende, CS, Italy.

Department of Medical and Surgical Sciences, University of Catanzaro, 88100, Catanzaro, Italy.

出版信息

Int Urol Nephrol. 2025 Jan;57(1):159-168. doi: 10.1007/s11255-024-04165-8. Epub 2024 Jul 25.

Abstract

Chronic kidney disease (CKD) represents a significant global health challenge, characterized by kidney damage and decreased function. Its prevalence has steadily increased, necessitating a comprehensive understanding of its epidemiology, risk factors, and management strategies. While traditional prognostic markers such as estimated glomerular filtration rate (eGFR) and albuminuria provide valuable insights, they may not fully capture the complexity of CKD progression and associated cardiovascular (CV) risks.This paper reviews the current state of renal and CV risk prediction in CKD, highlighting the limitations of traditional models and the potential for integrating artificial intelligence (AI) techniques. AI, particularly machine learning (ML) and deep learning (DL), offers a promising avenue for enhancing risk prediction by analyzing vast and diverse patient data, including genetic markers, biomarkers, and imaging. By identifying intricate patterns and relationships within datasets, AI algorithms can generate more comprehensive risk profiles, enabling personalized and nuanced risk assessments.Despite its potential, the integration of AI into clinical practice faces challenges such as the opacity of some algorithms and concerns regarding data quality, privacy, and bias. Efforts towards explainable AI (XAI) and rigorous data governance are essential to ensure transparency, interpretability, and trustworthiness in AI-driven predictions.

摘要

慢性肾脏病(CKD)是一项重大的全球健康挑战,其特征为肾脏损伤和功能减退。其患病率持续上升,因此有必要全面了解其流行病学、危险因素及管理策略。虽然传统的预后标志物,如估计肾小球滤过率(eGFR)和蛋白尿,能提供有价值的见解,但它们可能无法完全体现CKD进展及相关心血管(CV)风险的复杂性。本文综述了CKD中肾脏和CV风险预测的现状,强调了传统模型的局限性以及整合人工智能(AI)技术的潜力。AI,尤其是机器学习(ML)和深度学习(DL),通过分析包括基因标志物、生物标志物和影像学在内的大量多样的患者数据,为加强风险预测提供了一条有前景的途径。通过识别数据集中复杂的模式和关系,AI算法可以生成更全面的风险概况,实现个性化和细致入微的风险评估。尽管AI有潜力,但将其整合到临床实践中面临一些挑战,如某些算法的不透明性以及对数据质量、隐私和偏差的担忧。致力于可解释人工智能(XAI)和严格的数据治理对于确保AI驱动的预测的透明度、可解释性和可信度至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3169/11695560/f34566d2ede1/11255_2024_4165_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验