Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11234-9. doi: 10.1073/pnas.1000156107. Epub 2010 Jun 4.
Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.
显微镜极大地促进了我们对生物学的理解。尽管最近在光学显微镜方面取得了重大进展,可以突破衍射极限障碍,但这些技术依赖于荧光标记技术,因此无法对细胞的全部内容进行定量 3D 成像。电子晶体显微镜可以以 3-5nm 的分辨率对多形态结构进行成像,但仅适用于薄的或切片的标本。在这里,我们通过 X 射线衍射显微镜报告了整个未经染色的细胞在 50-60nm 分辨率下的定量 3D 成像。我们鉴定了细胞包括细胞壁、液泡、内质网、线粒体、颗粒、细胞核和核仁在内的细胞器的 3D 形态和结构。此外,我们观察到从重建的酵母孢子中突出的 3D 结构,表明孢子正在发芽。通过使用低温技术,X 射线衍射显微镜应该可以达到 5-10nm 的 3D 分辨率。这项工作为电子显微镜太厚而无法成像的各种生物样本的纳米级分辨率的定量 3D 成像铺平了道路。