Suppr超能文献

Kinetics and mechanism of methanol and formaldehyde interconversion and formaldehyde oxidation catalyzed by liver alcohol dehydrogenase.

作者信息

Pocker Y, Li H

机构信息

Department of Chemistry, University of Washington, Seattle 98195.

出版信息

Adv Exp Med Biol. 1991;284:315-25. doi: 10.1007/978-1-4684-5901-2_34.

Abstract

It has been shown that the hydrophobic interaction in the active-site plays a fundamental role in substrate binding. Proper molecular orientation is required for hydride transfer (Dalziel and Dickinson, 1967). For methanol, the binding is unfavored due to the lack of a hydrophobic chain. In the enzyme-coenzyme-substrate complex, the small methyl group of the substrate is not held in a fixed position, resulting in a low hydride transfer rate. The binding of NAD+ to the enzyme does not exhibit a significant effect on the binding of methanol, nor does methanol affect NAD+ binding. In the presence of LADH, methanol is oxidized by NAD+ to formaldehyde, while formaldehyde can be oxidized by NAD+ to formate ion or reduced by NADH to methanol. These reactions follow a rapid equilibrium random mechanism. Among these three reactions, the reduction of formaldehyde is the most rapid. The rate of formaldehyde oxidation is faster than the oxidation of methanol. Our study with these non-hydrophobic substrates provides an important bridge between the bioinorganic activation of zinc-bound water and the bioorganic oxidation of ethanol. Furthermore, it furnishes some insight into an enzymatic system that is so highly sensitive to small changes in substrate chain length that it can magnify the consequence of a modest change in substrate hydrophobicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验