Suppr超能文献

中、下段脊髓的传入输入对于脊髓猫的踏步运动是必要的。

Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats.

机构信息

Departments of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Ann N Y Acad Sci. 2010 Jun;1198:10-20. doi: 10.1111/j.1749-6632.2010.05540.x.

Abstract

Afferent inputs are known to modulate the activity of locomotor central pattern generators, but their role in the generation of locomotor patterns remains uncertain. This study sought to investigate the importance of afferent input for producing bilateral, coordinated hindlimb stepping in adult cats. Following complete spinal transection, animals were trained to step on the moving belt of a treadmill until proficient, weight-bearing stepping of the hindlimbs was established. Selective dorsal rhizotomies of roots reaching various segments of the lumbosacral enlargement were then conducted, and hindlimb stepping capacity was reassessed. Depending on the deafferented lumbosacral segments, stepping was either abolished or unaffected. Deafferentation of mid-lumbar (L3/L4) or lower-lumbar (L5-S1) segments abolished locomotion. Locomotor capacity in these animals could not be restored with the administration of serotonergic or adrenergic agonists. Deafferentation of L3, L6, or S1 had mild effects on locomotion. This suggested that critical afferent inputs pertaining to hip position (mid-lumbar) and limb loading (lower-lumbar) play an important role in the generation of locomotor patterns after spinal cord injury.

摘要

传入输入已知可调节运动中枢模式发生器的活动,但它们在运动模式产生中的作用仍不确定。本研究旨在探讨传入输入在产生成年猫双侧协调后肢步行动作中的重要性。在完全脊髓横断后,动物接受训练,在跑步机的移动带上行走,直到建立起熟练的、承重的后肢行走。然后对到达腰骶部各个节段的神经根进行选择性背根切断术,并重新评估后肢行走能力。根据去传入的腰骶段不同,行走要么被完全消除,要么不受影响。中腰段(L3/L4)或下腰段(L5-S1)去传入段可消除运动能力。在这些动物中,给予 5-羟色胺能或肾上腺素能激动剂不能恢复运动能力。L3、L6 或 S1 的去传入对运动有轻微影响。这表明与髋关节位置(中腰段)和肢体负荷(下腰段)相关的关键传入输入在脊髓损伤后运动模式的产生中起着重要作用。

相似文献

1
Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats.
Ann N Y Acad Sci. 2010 Jun;1198:10-20. doi: 10.1111/j.1749-6632.2010.05540.x.
2
Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
J Neurophysiol. 2019 Aug 1;122(2):585-600. doi: 10.1152/jn.00810.2018. Epub 2019 Apr 3.
3
Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments.
J Neurosci. 2000 Nov 15;20(22):8577-85. doi: 10.1523/JNEUROSCI.20-22-08577.2000.
4
Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
J Neurophysiol. 2005 May;93(5):2474-88. doi: 10.1152/jn.00909.2004. Epub 2005 Jan 12.
6
Propriospinal bypass of the serotonergic system that can facilitate stepping.
J Neurosci. 2009 Apr 29;29(17):5681-9. doi: 10.1523/JNEUROSCI.6058-08.2009.
7
Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input.
J Neurosci. 2008 Jul 30;28(31):7774-80. doi: 10.1523/JNEUROSCI.1069-08.2008.

引用本文的文献

2
Chemogenetic modulation of sensory afferents induces locomotor changes and plasticity after spinal cord injury.
Front Mol Neurosci. 2022 Aug 26;15:872634. doi: 10.3389/fnmol.2022.872634. eCollection 2022.
3
Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.
J Neurophysiol. 2018 Aug 1;120(2):497-508. doi: 10.1152/jn.00486.2017. Epub 2018 Apr 18.
4
A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.
J Neurosci Methods. 2015 May 15;246:134-41. doi: 10.1016/j.jneumeth.2015.03.015. Epub 2015 Mar 18.
5
Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man.
J Neurosci. 2014 Aug 13;34(33):11131-42. doi: 10.1523/JNEUROSCI.4674-13.2014.
6
Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity.
Stroke Res Treat. 2013;2013:128641. doi: 10.1155/2013/128641. Epub 2013 Apr 30.
7
Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
J Neurophysiol. 2013 Aug;110(3):760-7. doi: 10.1152/jn.01099.2012. Epub 2013 May 15.
9
Sensory feedback modulates quipazine-induced stepping behavior in the newborn rat.
Behav Brain Res. 2012 Apr 1;229(1):257-64. doi: 10.1016/j.bbr.2012.01.006. Epub 2012 Jan 13.

本文引用的文献

1
Transformation of nonfunctional spinal circuits into functional states after the loss of brain input.
Nat Neurosci. 2009 Oct;12(10):1333-42. doi: 10.1038/nn.2401. Epub 2009 Sep 20.
2
Physiologically based controller for generating overground locomotion using functional electrical stimulation.
J Neurophysiol. 2007 Mar;97(3):2499-510. doi: 10.1152/jn.01177.2006. Epub 2007 Jan 17.
4
Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation.
IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):266-72. doi: 10.1109/TNSRE.2006.881592.
5
Locomotor circuits in the mammalian spinal cord.
Annu Rev Neurosci. 2006;29:279-306. doi: 10.1146/annurev.neuro.29.051605.112910.
6
A role for hip position in initiating the swing-to-stance transition in walking cats.
J Neurophysiol. 2005 Nov;94(5):3497-508. doi: 10.1152/jn.00511.2005. Epub 2005 Aug 10.
8
Sensorimotor integration: locating locomotion in neural circuits.
Curr Biol. 2005 May 10;15(9):R341-3. doi: 10.1016/j.cub.2005.04.021.
9
Control of locomotor cycle durations.
J Neurophysiol. 2005 Aug;94(2):1057-65. doi: 10.1152/jn.00991.2004. Epub 2005 Mar 30.
10
Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
J Neurophysiol. 2005 May;93(5):2474-88. doi: 10.1152/jn.00909.2004. Epub 2005 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验