Suppr超能文献

蒙特卡洛模拟表明,通过光学显微镜可以观察到Chromati纳米结构。

Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy.

作者信息

Diesinger Philipp M, Heermann Dieter W

机构信息

Institut für Theoretische Physik Universität Heidelberg Philosophenweg 19 D-69120 Heidelberg Germany.

出版信息

PMC Biophys. 2010 Jun 10;3:11. doi: 10.1186/1757-5036-3-11.

Abstract

A long controversy exists about the structure of chromatin. Theoretically, this structure could be resolved by scattering experiments if one determines the scattering function - or equivalently the pair distribution function - of the nucleosomes. Unfortunately, scattering experiments with live cells are very difficult and limited to only a couple of nucleosomes.Nevertheless, new techniques like the high-resolution light microscopy supply a new approach to this problem. In this work we determine the radial pair distribution function of chromatin described by our E2A model and find that the dominant peaks which characterize the chromatin structure are very robust in several ways: They can still be identified in the case of chromatin fibers with reasonable linker histone and nucleosome defect rates as well as in the 2D case after a projection like in most high-res light microscopy experiments. This might initiate new experimental approaches like optical microscopy to finally determine the nanostructure of chromatin.Furthermore, we examine the statistics of random chromatin collisions and compare it with 5C data of a gene desert. We find that only chromatin fibers with histone depletion show a significant amount of contacts on the kbp-scale which play a important role in gene regulation. Therefore, linker histone and nucleosome depletion might not only be chromatin defects but even be necessary to facilitate transcription.PACS codes: 82.35.Pq, 87.16.A-, 87.16.af.

摘要

关于染色质的结构存在长期的争议。从理论上讲,如果能确定核小体的散射函数——或者等效地确定对分布函数,那么这种结构可以通过散射实验来解析。不幸的是,对活细胞进行散射实验非常困难,并且仅限于少数几个核小体。然而,诸如高分辨率光学显微镜等新技术为解决这个问题提供了新方法。在这项工作中,我们确定了由我们的E2A模型描述的染色质的径向对分布函数,发现表征染色质结构的主要峰在几个方面非常稳健:在具有合理连接组蛋白和核小体缺陷率的染色质纤维情况下,以及在大多数高分辨率光学显微镜实验中类似投影后的二维情况下,它们仍然可以被识别。这可能会引发新的实验方法,如光学显微镜,以最终确定染色质的纳米结构。此外,我们研究了随机染色质碰撞的统计数据,并将其与基因沙漠的5C数据进行比较。我们发现,只有具有组蛋白缺失的染色质纤维在kbp尺度上显示出大量的接触,这些接触在基因调控中起着重要作用。因此,连接组蛋白和核小体的缺失可能不仅是染色质缺陷,甚至对于促进转录是必要的。

PACS代码:82.35.Pq,87.16.A-,87.16.af。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83e9/2911407/221406ac6761/1757-5036-3-11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验