Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States.
Courant Institute of Mathematical Sciences, New York University , 251 Mercer St, New York, New York 10012, United States.
J Phys Chem B. 2017 Apr 20;121(15):3882-3894. doi: 10.1021/acs.jpcb.7b00998. Epub 2017 Mar 31.
Nucleosome placement, or DNA linker length patterns, are believed to yield specific spatial features in chromatin fibers, but details are unknown. Here we examine by mesoscale modeling how kilobase (kb) range contacts and fiber looping depend on linker lengths ranging from 18 to 45 bp, with values modeled after living systems, including nucleosome free regions (NFRs) and gene encoding segments. We also compare artificial constructs with alternating versus randomly distributed linker lengths in the range of 18-72 bp. We show that nonuniform distributions with NFRs enhance flexibility and encourage kb-range contacts. NFRs between neighboring gene segments diminish short-range contacts between flanking nucleosomes, while enhancing kb-range contacts via hierarchical looping. We also demonstrate that variances in linker lengths enhance such contacts. In particular, moderate sized variations in fiber linker lengths (∼27 bp) encourage long-range contacts in randomly distributed linker length fibers. Our work underscores the importance of linker length patterns, alongside bound proteins, in biological regulation. Contacts formed by kb-range chromatin folding are crucial to gene activity. Because we find that special linker length distributions in living systems promote kb contacts, our work suggests ways to manipulate these patterns for regulation of gene activity.
核小体定位或 DNA 连接子长度模式被认为会产生染色质纤维中的特定空间特征,但具体细节尚不清楚。在这里,我们通过介观建模来研究千碱基(kb)范围内的接触和纤维环依赖于 18 至 45bp 范围内的连接子长度的情况,这些值是根据活体系统建模的,包括无核小体区域(NFR)和基因编码片段。我们还比较了具有 18-72bp 范围内交替和随机分布连接子长度的人工构建体。我们表明,具有 NFR 的非均匀分布可增强灵活性并促进 kb 范围内的接触。相邻基因片段之间的 NFR 减少了侧翼核小体之间的短程接触,同时通过层次化环化增强了 kb 范围内的接触。我们还证明了连接子长度的变化会增强这些接触。特别是,纤维连接子长度的适度变化(约 27bp)会鼓励随机分布连接子长度纤维中的长程接触。我们的工作强调了连接子长度模式与结合蛋白在生物调控中的重要性。形成 kb 范围染色质折叠的接触对于基因活性至关重要。由于我们发现活体系统中特殊的连接子长度分布促进了 kb 接触,因此我们的工作为操纵这些模式以调节基因活性提供了思路。