Suppr超能文献

基于线性强度的马尔可夫随机场和离散优化图像配准。

Linear intensity-based image registration by Markov random fields and discrete optimization.

机构信息

Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany.

出版信息

Med Image Anal. 2010 Aug;14(4):550-62. doi: 10.1016/j.media.2010.04.003. Epub 2010 Apr 29.

Abstract

We propose a framework for intensity-based registration of images by linear transformations, based on a discrete Markov random field (MRF) formulation. Here, the challenge arises from the fact that optimizing the energy associated with this problem requires a high-order MRF model. Currently, methods for optimizing such high-order models are less general, easy to use, and efficient, than methods for the popular second-order models. Therefore, we propose an approximation to the original energy by an MRF with tractable second-order terms. The approximation at a certain point p in the parameter space is the normalized sum of evaluations of the original energy at projections of p to two-dimensional subspaces. We demonstrate the quality of the proposed approximation by computing the correlation with the original energy, and show that registration can be performed by discrete optimization of the approximated energy in an iteration loop. A search space refinement strategy is employed over iterations to achieve sub-pixel accuracy, while keeping the number of labels small for efficiency. The proposed framework can encode any similarity measure is robust to the settings of the internal parameters, and allows an intuitive control of the parameter ranges. We demonstrate the applicability of the framework by intensity-based registration, and 2D-3D registration of medical images. The evaluation is performed by random studies and real registration tasks. The tests indicate increased robustness and precision compared to corresponding standard optimization of the original energy, and demonstrate robustness to noise. Finally, the proposed framework allows the transfer of advances in MRF optimization to linear registration problems.

摘要

我们提出了一种基于线性变换的基于强度的图像配准框架,该框架基于离散马尔可夫随机场(MRF)公式。在这里,挑战来自于这样一个事实,即优化与该问题相关的能量需要一个高阶 MRF 模型。目前,优化这种高阶模型的方法不如流行的二阶模型的方法通用、易用和高效。因此,我们通过具有可处理二阶项的 MRF 来对原始能量进行逼近。在参数空间中的某个点 p 处的逼近是在 p 到二维子空间的投影上评估原始能量的归一化和。我们通过计算与原始能量的相关性来证明所提出的逼近的质量,并展示可以通过在迭代循环中对逼近能量进行离散优化来执行配准。在迭代过程中采用搜索空间细化策略以达到亚像素精度,同时保持标签数量小以提高效率。所提出的框架可以编码任何相似性度量,对内部参数的设置具有鲁棒性,并允许直观地控制参数范围。我们通过基于强度的配准和医学图像的 2D-3D 配准来演示框架的适用性。通过随机研究和实际配准任务来进行评估。测试表明,与原始能量的相应标准优化相比,该框架具有更高的鲁棒性和精度,并具有抗噪能力。最后,所提出的框架允许将 MRF 优化方面的进展转移到线性配准问题上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验